A usability engineering
process to ensure good
user interfaces includes
elements to be
considered before the
design, during the
design, and after field
installation of a
software product.

The Usability
Engineering
Life Cycle

Jakob Nielsen, Bellcore

in number of users and applications. The personal-computer revolution

and falling hardware prices made computers available to ever broader
groups of people who use computers for a larger variety of tasks. Initially, when
computers were used by only a few people performing specialized tasks, it made
some sense to require a high degree of user expertise. Also, because computers
were so expensive, it was not unreasonable to let users suffer a little in favor of
computational efficiency. Now, however, it pays to dedicate a large portion of
computational resources — CPU cycles, memory use, communication bandwidth,
screen space, and development effort — exclusively to making life easier for the
USser.

Users are becoming less willing to put up with difficult or uncomfortable
interfaces since experience with some current interfaces has shown them that
software can indeed be easy to learn and pleasant to use. In an unpublished study
from 1990, Tim Frank Andersen of the Technical University of Denmark read 70
reviews of software products in various personal computer magazines and counted
784 comments on the usability of the reviewed software. This is an average of 11.2
usability comments per software review. Many of these comments were fairly
superficial, but their sheer number indicates the importance of usability to today’s
users.

High usability is thus desirable, but it does not magically appear just because we
want it. To ensure the usability of interactive computer products, we must actively
include usability concerns in the software development process. Of course, nobody
deliberately sets out todesign an unusable interface, but only a systematic usability
effort using established methods can qualify as usability engineering. Good inten-
tions are not enough.

This article presents a practical usability engineering process that can easily be
incorporated into the product development process as steps to be taken in roughly
chronological order. Because the article considers the life cycle, several of the

C omputer user interfaces have become more important with the increase

0018-9162/92/0300-0012803.00 © 1992 IEEE COMPUTER

steps are iterative and some may over-
lap. The actions needed to ensure us-
ability form the usability process. The
model presented should therefore be
seen as advice about what to include in
the design and implementation process.
In this context, I am not giving advice
about the properties of the product of
this process. Many such guidelines ex-
ist, and studying and applying selected
guidelines is one of the recommended
steps.

Usability engineering
model

The model presented here is a modi-
fied and extended version of Gould and
Lewis’ “golden rules”: early focus on
users, user participation in the design,
coordination of the different parts of
the user interface, empirical user test-
ing, and iterative revision of designs
based on the test results.! Further inspi-
ration and modifications came from work
on usability engineering.>*

Figure 1 lists the elements in the com-
plete usability engineering model. How-
ever, the effort can be successful with-
out including every refinement. (See
the final section of this article for a
prioritization of methods under varying
levels of resource constraints.)

The most basic elements in the us-
ability engineering model are empirical
user testing and prototyping, combined
with iterative design. Because it’s near-
ly impossible to design a user interface
right the first time, we need to test,
prototype, and plan for modification by
using iterative design. Under typical
resource constraints, modifications will
be feasible onlyin the prototyping stage.
[t is much too expensive to change a
completely implemented product, es-
pecially if testing reveals the need for
fundamental changes in the interface
structure.

Product development
context

The following sections present usabil-
ity activities for three main phases of a
software project: before, during, and
after product design and implementa-
tion. The constraints of the print medi-
um necessitate a sequential presenta-

March 1992

0. Consider the larger context
1. Know the user

The user’s current task
Functional analysis
Evolution of the user

Capture the design rationale
10. Collect feedback from field use

Individual user characteristics

2. Competitive analysis
3. Setting usability goals Apply
4. Participatory design metamethods
. . . throughout
5. Coordinated design of the total interface L
ita::idal;c!z tit Prioritize the
.ro ‘uc 1dentity . . usability methods
6. Guidelines and heuristic analysis
7. Prototyping
8. Empirical testing
9. Iterative design

P

Figure 1. Elements of the usability engineering model.

tion of these usability activities, even
though they should really be applied
iteratively in the manner of Boehm's
spiral model of the software process.*

Software development and user in-
terface design are both part of a broad-
er corporate product-development con-
textin which one-shot projects are fairly
rare. Usability should apply to the de-
velopment of entire product families
and extended projects where products
are released in several versions over
time.

This broader context strengthens the
arguments for allocating substantial us-
ability engineering resources as early as
possible. Design decisions made for early
products have ripple effects because
subsequent products and versions must
be backward compatible. Consequent-
ly, some usability engineering special-
istsbelieve that “human factorsinvolve-
ment with a particular product may
ultimately have its greatest impact on
future product releases.”™ Of course,
having to plan for future versions is also
a compelling reason to follow the initial
product release with field studies of its
actual use.

The term life cycle is normally de-
fined (IEEE standard 100-1988) as start-
ing when a software product is con-
ceived and ending when the product is
no longer available for use. The usabil-
ity engineering life cycle extends be-
yond this period because of the impact

of usability decisions on future prod-
ucts and their life cycles. We must con-
sider not just how an interface design
meets current needs but also whether it
conflicts with skills users have acquired
from previous interfaces and whether it
seems flexible enough to be extended
for future interfaces.

Predesign stage

The first stage of the usability life
cycle aims at understanding the target
user population and user tasks. We can
make valid design decisions and appro-
priate trade-offs only when we under-
stand these factors, so gathering this
information should be the first priority.

We should not rush into design. The
least expensive way for usability activi-
ties to influence a product is to do as
much as possible before design is start-
ed. Then it will not be necessary to
change the design to comply with the
usability recommendations, and it may
be possible to avoid developing unnec-
essary features.

Several of the predesign usability ac-
tivities might be considered part of a
market research or product planning
process and be performed by marketing
groups. However, traditional market
research does not use all the needed
usability design methods, and the re-
sults are often poorly communicated to

13

developers. But there should be noneed
for duplicate efforts if management suc-
cessfully integrates usability and mar-
keting activities. An outcome of such
integration could be the consideration
of product usability attributes as fea-
tures to be used by marketing to differ-
entiate the product.

Know the user. The first step in the
usability process is to study the prod-
uct’s intended users. As a minimum,
developers should visit a customer site
to gain a feel for how the product will be
used. Individual user differences and
variability in tasks are the two factors
with the largest impact on usability, so
they need to be studied carefully. De-
velopers should also keep in mind that
users often include installers. maintain-
ers, system administrators, and other
support staff, in addition to the people
who sit at the keyboard. The concept of
“user” should be defined to include ev-
eryone whose work is affected by the
product.

Individual user characteristics. We
should know the type of people who will
be using the system. In some situations
it’s possible to identify the users as spe-
cific individuals — for example. when
the product is going to be used in a
specificdepartmentin a particular com-
pany. For products with more widely
scattered users, it’s possible to visit only
a few. representative customers. Alter-
natively, the products might be aimed
toward the entire population or a very
large subset.

By knowing the users’ work experi-
ence, educational level, age. previous
computer experience, and so on, we can
anticipate their learning difficulties to
some extent and better set appropriate
limits for user interface complexity.
Certainly, we also need to know the
users’ reading and language skills. For
example, very young children with no
reading ability require a nontextual in-
terface.

The users’ work environment and
social context are also important. As a
simple example, the use of audible
alarms. “beeps,” or more elaborate
sound effects may not be appropriate
for users in open office environments.
Inafieldinterview I conducted, a secre-
tary insisted on the ability to shut off the
beep;she feared that others would think
she was stupid if her computer beeped
at her all the time.

14

User differences and
task variability are the
two factors with the
largest impact on usability.
Study them carefully.

A great deal of the information need-
ed to characterize individual users may
come from market analysis or as a side
benefit of observational studies con-
ducted for task analysis. We can also
collect suchinformation directly through
questionnaires orinterviews. Inany case,
it’s best not to rely totally on written
information. New insights are almost
always achieved by observing actual
usersin their own working environments.

The user’s current task. A task analy-
sisis extremely important as early input
to the system design. The users’ overall
goals should be studied, as well as how
they currently approach the task, what
their information needs are, and how
they deal with exceptional circumstanc-
es or emergencies. For example, sys-
tematic observation of users talking to
their clients may reveal input and out-
put needs for a transactions processing
system. The users’ model of the task
should also be identified, because it can
be used as a source for metaphors for
the user interface. Also, we should seek
out and observe especially effective us-
ers and user strategies and “work
arounds” as hints of what a new system
could support. Finally, we should try to
identify the weaknesses of the current
situation: points where users fail to
achieve goals, spend excessive time, or
are made uncomfortable. These weak-
nesses present opportunities for prod-
uct improvements.

Functional analysis. A new computer
system should not propagate subopti-
mal methods that may have been insti-
tuted because of limitations in previous
technologies. Therefore, we should not
just analyze the way users currently do
the task. but also the underlying func-
tional reason for the task: Whatisit that
really needs to be done? What are merely
surface procedures that can, and per-

haps should, be changed? At the same
time. there is a limit to how drastically
we can change the users’ task, so the
functional analysis should be coordi-
nated with the task analysis.

Evolution of the user. Users do not
stay the same. Using the system changes
the users, and as they change, they use
the system in new ways that are impos-
sible to forecast completely. Users will
always discover new uses for computer
systems, and a flexible design stands a
better chance of supporting these new
uses. Thus, we should make an educat-
ed guess about future users and uses,
based on our knowledge about how oth-
er users have changed in the past. One
way of getting such knowledge is through
the postdeployment field studies rec-
ommended as the last step of the usabil-
ity process.

A typical change is that users eventu-
ally become experts and want interac-
tion shortcuts (sometimes called accel-
erators). It is important to avoid
designing only for the way users will use
the system in the first short period after
its release.

Competitive analysis. Prototyping is
an important part of the usability pro-
cess, and existing — perhaps competing
— products are often the best proto-
types of our own product. We should
analyze existing products heuristically
according to established usability guide-
lines (discussed in the next section) and
perform empirical user tests with these
products.

A competing product is already fully
implemented and can therefore be test-
ed very easily. Also, its developers of-
ten put a reasonable effort into their
development process, so the competing
product may work fairly well. User test-
ing with an existing product can be more
realistic than a test of other prototypes.
By having users perform real tasks on
the competing system, we can learn how
well its functionality and interaction
techniques support the kinds of tasks
we expect the planned new product to
support.

If several competing products are
available, we can do acomparative anal-
ysis of the different approaches to the
user interface design issues we’re study-
ing. This will provide ideas for the new
design and ad hoc guidelines for ap-
proaches that seem to work and others
that should be avoided.

COMPUTER

A competitive analysis does not im-
ply using other people’s copyrighted
designs. We hope to do better as a result
of analyzing their strengths and weak-
nesses.

Setting usability goals. The five main
usability characteristics are

e learnability,

e efficiency of use once the system
has been learned,

¢ ability of infrequent users to return
tothe system without havingtolearn
it all over.

e frequency and seriousness of user
errors, and

* subjective user satisfaction.

Obviously. these five parameters can-
not be given equal priority in any single
design, and clear priorities, based on
the analysis of the users and their tasks,
should be set. For example, high learn-
ability would be especially important if
new employees were constantly being
brought in on a temporary basis. The
ability of infrequent users to easily re-
turn to the system would be especially
important for a system-reconfiguration
utility used once every three or four
months. In many cases, however, the
five usability characteristics tend to be
positively correlated rather thanin con-
flict, so getting good results on all of
them is normally a reasonable goal.

Usability goals should be specified in
more detail than the five general usabil-
ity parameters, and doing so is an im-
portant part of the usability process.
Not all the goals we specify have to be
measured, but just knowing (and agree-
ing on) goals helps clarify the design
process. Important goals should be spec-
ified in more detail than less important
goals, and some goals should be speci-
fied in sufficient detail to allow empiri-
cal measurement of the degree to which
the product achieves these goals.

The development team should par-
ticipate in defining the goals so that its
members won’t see usability goals as
outside interference with their project.
Developers who buy into the goals will
be more motivated to fulfill them.

In specifying usability goals, several
different levels of the attributes can be
listed.” The most important may be the
worst acceptable level, because it indi-
cates that the product would be of no
use if that level of usability is not
achieved. Furthermore, we should spec-

March 1992

Consistency, an important
usability characteristic,
should apply across
all media forming the
total user interface.

ify the planned usability level. Addi-
tional levels are the current level of us-
ability observed in competitive systems,
or in whatever methods users currently
use to perform the task, and the best
possible level for the usability attribute.

As an example, consider the goal for
user errors in a system for electronic
submission of expense accounts in a
company where 10 percent of the paper
forms have contained errors. That 10
percent constitutes the currentlevel and
zero errors the best possible level. Be-
cause expense report errors are not cat-
astrophic, it may not be reasonable to
specify zero errors as the planned level,
but 2 percent might be reasonable. Six
percent may be the worst acceptable
level since it may not be worthwhile to
change the reporting procedures unless
a significant improvement can be ob-
tained. Of course, usability goals should
be set in a trade-off with any further
system attributes, so the worst accept-
able user error level might be 15 per-
cent if significant cost savings were ex-
pected from the electronic processing
of the documents.

Design stage

After completion of the predesign
stages, several steps should be followed
in carrying out the design process. In
most cases, we cannot follow a strict
order of activities because of the funda-
mental need for an iterative design ap-
proach that gradually refines the user
interface in several passes through the
design process.

The main objective of the design phase
is to arrive at a usable implementation
that can be released. For this to happen,
we must meet two further objectives:
getting a concrete embodiment of the
design in a prototype that follows estab-
lished usability principles, and empiri-

cally verifying the design with real users
to ensure that it meets their needs.

Participatory design. Even if we fol-
low the advice to “know the user” be-
fore the design phase, we still cannot
know the user completely enough to
answer all issues that will come up. In-
stead of guessing, designers should have
access to a pool of representative users
after the start of the design phase. Fur-
thermore, users often raise questions
that the development team has noteven
dreamed of asking. This is especially
true with respect to potential mismatches
between the users’ actual task and the
developers’ model of the task. There-
fore, users should be involved in the
design process through regular meet-
ings between designers and users.

Users are not designers, so we should
not expect them to come up with design
ideas from scratch. However, they are
very good at reacting to concrete de-
signs that they do not like or that will
not work in practice. To get the full
benefit of user involvement, we must
present the suggested system designs in
a form the user can understand. Instead
of voluminous system specifications, use
concrete and visible designs, preferably
in the form of prototypes. In the early
stages of the design, when functional
prototypes are not yet available, paper
mock-ups or a few screen designs can
prompt user discussion. Even simple,
guided discussion can elicit ideas.

It is important to reach the people
who will actually use the system, not
just their managers. For example, in
developing a computer-aided instruc-
tion system, we need access both the
teachers and the students. However,
teachers have an authoritative position
withrespect to the students, so we should
talk to members of each group sepa-
rately. In any case, it is probably very
difficult to involve young children di-
rectly in the design. For systems to be
used by young children, we have to rely
mostly on empirical testing, not on par-
ticipatory design.

Coordinated design. Consistency is
one of the most important usability char-
acteristics.® Consistency should apply
across the different media that form the
total user interface, including not just
the application screens but also the doc-
umentation, the on-line help system,
and any on-line or videotaped tutorials.
Also, consistency is not measured just

15

at some specific point in time. It should
apply over successive releases of a prod-
uct so that new releases are consistent
with their predecessors. Despite its gen-
eral desirability, consistency sometimes
conflicts with other desirable usability
characteristics. Some flexibility is nec-
essary to avoid forcing a bad design on
users for the sake of consistency.

To achieve consistency of the total
interface, a centralized authority for each
development project should coordinate
the various aspects of the interface.
Typically this coordinator can be a sin-
gle person, but on very large projects or
for corporate-wide standards, a com-
mittee may be more appropriate.

In addition to formal coordination
activities, it helps to have a shared cul-
ture in the development groups — that
is, acommon understanding of what the
user interface should be like. Many as-
pects of user interface design (especial-
ly the dynamics) are hard to specify in
written documents but can be fairly eas-
ily understood from looking at existing
products following a given interface
style. Actually, prototyping also helps
achieve consistency. since the proto-
type is an early statement of the kind of
interface the project is aiming toward.
An explicit instance of parts of the de-
sign makes the design details more sa-
lient for developers and encourages them
to follow similar principles in subse-
quent design activities.

Consistency can be increased through
technological means such as code shar-
ing or a constraining development envi-
ronment. When several products use
the same code for parts of their user
interfaces, those parts of the interfaces
will automatically be consistent. Even if
identical code cannot be used, we can
provide development tools and librar-
ies thatencourage user interface consis-
tency by making it easiest for develop-
ers to implement interfaces that follow
given guidelines.

Standards. Interface standards are
currently a popular approach to achiev-
ing consistency. A standard can be a
widely followed de facto standard such
as those promoted by several vendors
and window systems, or it can be an in-
house standard. The advantage of a de
facto standard is that it ensures product
consistency with a large set of products
developed by other companies. The
advantage of in-house standards is that
they can be tailored to the needs of the

16

Use simple and natural dialogue
Speak the user’s language
Minimize user memory load

Be consistent

Provide feedback

Provide clearly marked exits
Provide shortcuts

Provide good error messages

Prevent errors

Figure 2. Nine usability heuristics.*’

special kind of application normally
developed by a specific company. Both
kinds of standards may increase the re-
use of code and documentation.

Formal international standards for
some aspects of user interfaces are apt
to be promulgated within a few years.
However, such standards are not likely
to constrain user interfaces sufficiently
to form the only basis for consistency. It
is possible to adopt a general standard
and supplement it with a set of house
rules for various design details such as
graphical look and choice of vocabu-
lary. We could, of course, do with just
the house style guide and avoid the larg-
er standards, but that would risk longer
training time for new employees accus-
tomed to the main interface standards.

Standards and guidelines differ in that
a standard specifies how the interface
should appear to the user, whereas a set
of guidelines provides advice about its
usability characteristics. (Guidelines are
discussed in the next section.) A given
standard should follow most of the tra-
ditional usability guidelines so that in-
terfaces designed according to the stan-
dard will be as usable as possible. For
example, a guideline may state that us-
ers should always have an easy way out
from any undesired system state. One
standard might instantiate that general
guideline by specifying that an Undo
command should always be available
and shown as an icon at the top right of
the screen. Another standard might fol-
low the same guideline by returning to
the previous system state whenever the
user hits the Escape key.

Product identity. A product identity
statement is a high-level description of
what kind of “thing” the product is. It

specifies the project’s overall goals: what
the product is supposed to be good for,
who is going to use it, and what other
products it will be used with. The prod-
uct identity statement can help coordi-
nate the design because it is a short
document known by all members of the
development team.

The project manager should write
and review the product identity docu-
ment before the start of the design pro-
cess and then modify it sparingly.

Guidelines and heuristic analysis.
Guidelines list well-known principles
for user interface design that should be
followed in the development project. In
any given project, several different lev-
els of guidelines should be used:

e general guidelines applicable to all
user interfaces,

o category-specific guidelines for the
kind of system being developed (for
example, guidelines for window-
based administrative data process-
ing or for voice interfaces accessed
through telephone keypads), and

e product-specific guidelines for the
individual product.

General guidelines are often published
in technical journals or books. Some
guideline documents contain thousands
of guidelines, while others are less volu-
minous. comprising tens or hundreds of
rules. A short set of guidelines (such as
in Figure 2) is suitable for design inspi-
ration or as a checklist in heuristic eval-
uation, while a large set of guidelines
can serve as a reference for answering
specific design questions.

Since good published guidelines are
available,in-house development of gen-
eral usability guidelines is seldom worth-
while. Also, a complete set of category-
specific guidelines can often be found in
the published literature, but we might
have to adjust them somewhat to fit the
precise kind of products being devel-
oped. Finally, the product-specific guide-
lines must, by definition, be developed
for each project on the basis of observa-
tions of what does or doesn’t work in
the testing of competitive products and
initial prototypes.

One general usability principle is to
tell the user what is going on by provid-
ing feedback. For example. afile system
could indicate that a file has been delet-
ed by removing its name or icon from a
list of current files. A category-specific

COMPUTER

principle for hypertext systems (see the
sidebar) is to provide users with a sense
of location in the information space but
avoid showing a complete overview
diagram of all nodes and links if the
document is too large. For a large elec-
tronic handbook with a strict chapter-
section-subsection hierarchy, a product-
specific guideline could then provide
feedback on the location with a fish-eye
view showing the current specific loca-
tion against an indented list of the sub-
heading hierarchy.

Itis possible to perform heuristic eval-
uation on the basis of the guidelines.’
This is done by going through the inter-
face design and determining whether

each of its elements follows each of the
guidelines established for the project.
The actual activity can take the form of
formal walk-throughs with elaborate
checklists, or it can be performed more
casually. But even the most casual heu-
ristic evaluation should be based on
some usability guidelines, not just per-
sonal opinion. The advantage of heuris-
tic evaluation is that it can be done in
the very early design stages because it
does not require a running system. But
I'stress that heuristic evaluation should
only supplement empirical testing.
Usability guidelines often contain
apparent contradictions that can be dif-
ficult to resolve for people who are not

usability specialists. To make appropri-
ate trade-offs, we need to understand
the spirit behind the guidelines, and this
requires understanding higher level us-
ability principles such as consistency.
The same is true for applying results
from the human factors research litera-
ture, since we cannot expect the litera-
ture to contain explicit design decisions.
Guidelines that contain lists of advan-
tages and disadvantages of various de-
sign approaches can also help us make
trade-offs, but they are, again, difficult
to apply for those who are not usability
specialists.

In general, the project should have
access to a usability expert to help re-

Hypertext

Hypertext'? interconnects related pieces of information in a

computer so that the user can move to new locations in the
information space by following the connecting links. The in-
formation is normally divided into units, which are often dis-
played in separate windows on the screen. These units are

called nodes because the entire hypertext information space

forms a graph structure.

Navigation. A major issue in the design of hypertext sys-
tems is how to support the users’ navigation through the in-
formation space. In the example in the figure, users might
jump directly from node A to node D, or they may take the
path AE—D or even the path A5B—C—sF—E—D. Be-

cause of this great freedom in moving about, users can easi-
ly get confused about where they are, where they came from,

and where they can go. To alleviate these problems, hyper-
text systems often include some kind of overview diagram
somewhat like the figure, as well as a history facility listing
the previously visited nodes.

Fish-eye views. Fish-eye views® increase users’ sense of

location in an information space by showing great detail for
those parts of the space close to the user's current location
of interest and gradually diminishing amounts of detail for
those parts progressively farther away. The use of fish-eye
views therefore requires two properties of the information
space: It should be possible to estimate the distance be-
tween a given location and the user’s current focus of inter-
est, and it should be possible to display the information at
several levels of detail. This is especially easy to do in a hi-

erarchically structured electronic book in which distant chap-

ters can be displayed by their chapter heading only. Closer
chapters can show additional levels of section and subsec-
tion headings.

Applications. The most obvious hypertext application is
probably on-line manuals. Users of a software package will
already be at their computers when they want to look up
something in the manual. For many other applications, the
need to be at a computer is somewhat of a disadvantage

compared with the use of printed books — at least given cur-

March 1992

(A— B A C
L+ Y ¥
LN | 2
R - E | Hypertext
—_— graph
structure.

rent computer hardware. Even so, hypertext has many diverse
applications, inciuding museum and tourist information, eiec-
tronic encyclopedias, teaching classic Greek literature, legal
information for patent lawyers, auditing, brainstorm support,
programming environments, and games.

Design rationale. Hypertext can capture the rationale for
user interface design decisions in a network of interrelated de-
sign issues and arguments pro and con. For example, an is-
sue in the design of a paint program could be whether to
present the various colors as a permanently visible palette or
a pop-up menu, or to have the user explicitly type in the color
mixture as percentages of red, green, and blue. There would
be one hypertext node for the overall issue of color selection,
with links to separate nodes for each possible solution. These
nodes would have small sketches of how each interface de-
sign would look, and they would be linked to further nodes
with the results of any user testing or heuristic evaluation. Be-
cause user interface decisions affect one another, there would
also be links to, say, nodes about the use of screen space:
The possible decision to use a permanently visible palette
would diminish the space available for other interface ele-
ments and the primary drawing window.

References

1. J. Conklin, “Hypertext: An Introduction and Survey,” Computer,
Vol. 20, No. 9, Sept. 1987, pp. 17-41.

2. J. Nielsen, Hypertext and Hypermedia, Academic Press, San Di-
ego, Caiif., 1990.

3. G.W. Furnas, “Generalized Fish-Eye Views,” Proc. ACM CHI 86,
ACM, New York, 1986, pp. 16-23.

solve contradictory guidelines and to
help in heuristic evaluation. Although
different usability experts may give dif-
ferent advice, this does not necessarily
imply that at least one of them is wrong.
There are so many degrees of freedom
in user interface design that several so-
lutions may be more or less equally
reasonable.

Prototyping. Experimental prototyp-
ing is highly recommended for the early
stages in the design process. For soft-
ware systems, we should “plan to throw
one away”® because the first design will
never be good enough. If anything, this
advice is truer of interfaces than of oth-
er components because of the greater
difficulty of predicting their flaws. It is
less expensive to throw away a proto-
type than a completely implemented,
fully functional system.

In traditional software engineering
models, most of the development time
is devoted to refining various interme-
diate work products, and executable
programs are produced at the last possi-
ble moment. A problem with this ap-
proach is that there is no user interface
to test with real users until this last
possible moment, because the “inter-
mediate work products” do not explic-
itly separate the user interface in a pro-
totype with which users can interact.
Experience also shows that it is not
advisable to involve the users in the
design process by showing them abstract
specifications documents; they do not
understand documents nearly as well as
concrete prototypes.

It’s best to postpone final implemen-
tation untillate in the development pro-
cess so that it can be done on the basis of
experiences with the prototypes. The
early prototypes can be quite primitive
(for example, paper mock-ups), where-
as later prototypes can be progressively
closer to the final product. Often we can
gain substantial insights from low-fidel-
ity prototypes,’ so it is probably better
to prototype early and prototype often
than to put an extensive effort into a
single, elaborate, and (too) late proto-
type. Even computerized prototypes
may be implemented faster and cheap-
er in systems other than the eventual
delivery platform, and implementation
time can sometimes be reduced by
“cheating” on the algorithms to make
them ignore the special cases that often
take an inordinate amount of program-
ming effort.

18

Prototype early and
prototype often to avoid
putting extensive effort
into a single, elaborate,

(too) late prototype.

Empirical testing. The most basicrec-
ommendation for empirical testing is
simply to do it. The benefits of doing
some user testing versus doing no user
testing are much greater then the differ-
ential benefits of various approaches to
testing.

There are two basic forms of empiri-
cal testing:

(1) Testing a more or less finished
interface to check whether the usability
goals have been achieved. This kind of
testingimplies doing some form of quan-
titative measurement.

(2) Formative evaluation of a system
still being designed to see which aspects
of the user interface work and which
cause usability problems. This kind of
testing is often best done using qualita-
tive methods. At this stage, it is more
important to know why the interface is
wrong than how much it is wrong.

Inboth cases, itis important to have the
test users perform tasks representative
of the eventual use indicated by the
predesign task analysis.

Some of the more common test meth-
ods are

¢ Thinking aloud (see the sidebar).

¢ Constructive interaction (sometimes
called codiscovery learning). In this
method, two users work together to
perform the test task. This approach is
better than traditional thinking aloud
when the test subjects are children,
because verbalizing comes more natu-
rally in a two-user setting. Even adults
often find this method more natural,
but it does have the obvious disadvan-
tage of requiring twice as many test
users.

¢ Attitude questionnaires in which
users rate designs on, say, a I to 5 scale.

® Tests of the user’s level of knowl-
edge (or other user skills) before and
after using the system.

e Automatic computer logging of user
actions. Later analysis can determine,
say, that a certain error message is is-
sued so frequently that the “prevent
errors” usability guideline should be
applied to reduce the probability of the
corresponding error situation.

¢ Observation of users workingin their
natural environment with their own
tasks.

e Observation of users working on a
set of representative standard tasks.

The last two methods are especially suit-
ed for follow-up tests of released prod-
ucts or for tests of prototypes that are
complete enough to allow users to do
real work.

From the results of the empirical tests,
we obtain a list of usability problems in
the test version, as well as hints for
features to supportsuccessful user strat-
egies. It’s not feasible to solve all the
problems, so we prioritize them. The
ranking should be based on experimen-
tal data about the impact of the prob-
lems on user performance (for exam-
ple, how many people will experience
the problem and how much time each of
them will waste because of it).

But sometimes we must rely on intu-
ition only. In some cases, solving a prob-
lem may make the interface worse for
those users who do not experience the
problem. Then a trade-off analysis is
necessary to determine whether tokeep
or change the interface, based on a fre-
quency analysis of how many users will
have the problem compared with how
many will suffer because of the pro-
posed solution.

The time and expense needed to fix a
particular problem is also a factor in
determining priorities. Often, usability
problems can be fixed by changing the
wording of a menu item or an error
message. Other design fixes may in-
volve fundamental changes to the soft-
ware (which is why they should be dis-
covered as early as possible) and will be
implemented only if they are judged to
affect usability significantly.

Iterative design. On the basis of the
usability problems and opportunities
disclosed by the empirical testing, we
can produce a new version of the inter-
face. Some testing methods, such as
thinking aloud, provide sufficient in-
sight into the problems to suggest spe-
cific changes to the interface. In other
cases, alternative potential solutions

COMPUTER

need to be designed solely on the basis
of usability guidelines. and it may be
necessary to test several possible solu-
tions before making a decision. Famil-
iarity with the design options. insight
gained from watching users, creativity,
and luck are all needed at this point.
Some of the changes we make tosolve
certain usability problems may fail to
solve the problems or even introduce
new ones. This is another reason for
doing iterative design and evaluation.

Retesting. Additional usability prob-
lems will likely appear in repeated tests
after the most blatant problems have
been corrected. There is no need to test
initial designs comprehensively since
they will be changed anyway. We should
change and retest the user interface as
soon as we detect and understand a
usability problem so that we can find

the remaining problems that were
masked by the initial glaring problems.

During the iterative design process it
may not be feasible to test each succes-
sive version with actual users. The iter-
ations are a good way to evaluate design
ideas simply by trying them out in a
concrete design. We can then subject
the design to heuristic analysis and show
it to usability experts and consultants,
ordiscussit with expert users (or teachers,
in the case of learning systems).

We should not “waste™ users by per-
forming elaborate tests of every single
design idea. Test subjects are normally
hard to come by and should be con-
served for the testing of major itera-
tions. Also, users get “worn out” as ap-
propriate test subjects. As they get more
experience with the system, they stop
being representative of novice users see-
ing the design for the first time. Users

who have been involved in participatory
design are especially inappropriate
as test subjects because they will be
biased.

Design rationale. The rationale for
the various user interface design deci-
sions can be made explicit and recorded
either in traditional written formorin a
hypertext structure such as gIBIS.'"
Having access to such an audit trail is
important during iterative development
and during development of any future
product releases. Because we will often
have to change the interface, we should
know the reasons for the original design
to avoid sacrificing important usability
principles to attain a minor objective.
Furthermore, the design rationale can
help in maintaining user interface
consistency across successive product
versions.

Thinking aloud

Thinking aloud is a commonly recommended method for
user testing that can be used for almost any system, so |
present it in somewhat more detail than the other methods
mentioned in this article. Many of the recommendations also
apply to other forms of user testing.

Basically, a thinking-aloud test involves having a test sub-
ject use the system while continuously thinking out loud.
While verbalizing their thoughts, the test users reveal their
view of the computer system, and this lets us identify their
major misconceptions. We get a very direct understanding of
what parts of the dialogue cause the most problems, because
the thinking-aloud method shows how users interpret each in-
terface item.

The thinking-aloud method has traditionally been used as a
psychological research method,” but it is increasingly being
used for the practical evaluation of human-computer interfac-
es.? Studies have shown? that computer professionals can
use the thinking-aloud method to good effect. Often, it is
enough to run a fairly small number of test users (4+1) to find
most usability problems. The main disadvantage of the think-
ing-aloud method is that time measurements will not be repre-
sentative of real usage because verbalizing thoughts and an-
swering questions will slow down the user.

Test tasks. The experimenter must prepare a set of tasks
for the test user, since the experience of using an application
differs significantly depending on whether the user is just fool-
ing around or is trying to achieve a set goal. We are normally
interested in testing the usability of software to achieve a
goal. The tasks should be chosen to reflect typical, serious
usage situations.

Running the test. Unfortunately, it is rather unnatural for

most people to continuously verbalize their thoughts. There-
fore, the experimenter often needs to prompt the test user

March 1992

with questions like “What are you thinking now?” or “How do
you interpret this error message?” The experimenter should
not answer any questions asked by the user because the test
aims at assessing how easy the user interface is to use with-
out outside help. To increase the test user’s confidence, the
experimenter should ensure an early success experience by
having the very first assignment be extremely easy.

Ethical considerations. Test results from individual users
should be kept confidential. It would immediately ruin any
constructive atmosphere if, say, the users’ manager was to
use test scores to assess their computer skills. Even so, test
users will always feel as though they are taking an exam, and
they will feel stupid whenever they make mistakes. To reduce
the unpleasantness of the test, experimenters should inform
the test users that they are not testing the users but that they
are testing a preliminary software design that is bound to
have some problems. Finally, test subjects should be allowed
to discontinue the test at any time if they find it too unpleas-
ant (their natural pride will ensure that they will almost never
do so).

References

1. K.A. Ericsson and H.A. Simon, Protocol Analysis: Verbal Reports
as Data, MIT Press, Cambridge, Mass., 1984.

2. 8. Denning et al., “The Value of Thinking-Aloud Protocols in Indus-
try: A Case Study at Microsoft Corporation,” Proc. Human Factors
Soc. 34th Ann. Meeting, Human Factors Society, Santa Monica,
Calif., 1990, pp. 1285-1289.

3. J. Nielsen, “Evaluating the Thinking-Aloud Technique for Use by
Computer Scientists,” in Advances in Human-Computer Interac-
tion, Vol. 3, H.R. Hartson and D. Hix, eds., Ablex, Norwood, N.J.,
1992, pp. 75-88.

Postdesign stage

The main objective of usability work
after product release is to gather data
for the next version and for new future
products. In the same way that existing
and competing products were the best
prototypes for the product in the initial
competitive analysis phase, a newly re-
leased product can be viewed as a proto-
type of future products, and in most
cases it is certainly the prototype of its
own next release. Therefore, we must
not end the usability process with the
initial release of the product to the mar-
ketplace; we need to conduct follow-up
studies of product use in the field. Such
studies assess how real users use the
interface for naturally occurring tasks in
their real-world working environments
and can lead to insights not readily avail-
able from laboratory studies.

Asimple way to obtain feedback from
users of installed products is to log user
calls to hot lines or other product-sup-
port structures. It is important to go
beyond simply recording immediate
complaints and classify the problems to
determine patterns and likely root caus-
es. However, this only provides feed-
back about problems. To learn about
the system’s positive aspects — and its
new, unexpected uses — we need to
visit real users in their everyday work
environments. Also, logging user ses-
sions with the installed system is a good
way to obtain field data on system use.

Finally, economic data on the sys-
tem’s impact on the quality and cost of
the users’ work product and quality of
their work life are very important. We
can gather these data through surveys,
supervisor opinions, statistics for ab-
senteeism, and so on. These data should
be compared with similar data collected
before the introduction of the system.

Life cycle model
summary

Look again at Figure 1, the outline of
activities recommended in our usability
engineering process, and note that some
of the recommended methods are not
really single “steps” but should be used
throughout the process.

Costs. Obviously, there is some cost
associated with following the recom-

20

mended usability engineering process.
even though we can significantly reduce
these costs by concentrating on a subset
of the methods. But usability is not just
a cost item in a development project.
even though the “benefits” side of the
cost-benefit trade-offis articulated with
comparatively poor precision and evi-~
dence in the usability literature.!' (One
documented case study shows savings
of $41,700 in reduced training time for
one smallin-house product as a result of
a $20,700 usability effort.'?)

The financial payoff associated with
users’ ability to learn the product faster
and work more productively is spread
over the entire period of product use
and is therefore hard to measure pre-
cisely. And these benefits are certainly
not explicitly visible during develop-
ment. A major benefit for the develop-
ment team itself, however, is the time
saved in notimplementing features that
the usability analysis shows are not need-
ed by users. Furthermore, in many situ-
ations usability is a major marketing
consideration, and an otherwise accept-
able product will fail completely if it is
not perceived as usable by customers.

In any case, the cost-benefit relation
may be drastically changed when con-
sidered in the context of the entire prod-
uct life cycle rather than a single-re-
lease context. This is especially true if
we take the even broader corporate
perspective of multiproduct develop-
ment.> A benefit of early usability ef-
forts may manifest itself in fewer cus-
tomer modification requests if users’
needs are matched better from the start.
Another benefit may be the ability (and
willingness) of users to learn and adopt
additional products if they are easier to
use.

Metamethods. To ensure the success-
ful application of the usability engineer-
ing methods discussed here, it is impor-
tant to supplement each with the
following “metamethods™ (methods that
apply to methods):

* Write down an explicit plan for what
to do when using the method. For exam-
ple, a plan for empirical user testing
should include information about how
many users to test, what kind of users to
test (and how to get them), what test
tasks these users will be asked to per-
form (which itself should be based on
task analysis and user observation), and
a time schedule for the studies.

¢ Subject this plan to an independent
review by a person who is not otherwise
on the development team and who can
critique it from a fresh perspective. Of
course, this person should be experi-
enced in usability engineering.

e Perform a pilot activity by investing
no more than about 10 percent of the
total resources budgeted for the use of
the method. Then revise the plan for the
remaining 90 percent to fix the difficul-
ties that invariably will be found during
the pilot activity. In empirical user test-
ing. users often misinterpret the origi-
nal test tasks. so be sure that the main
test focuses on system usability, not on
the developers’ ability to write readable
test instructions.

As early as possible in the project,
establish an overall usability plan listing
the usability activities to be performed
throughout the life cycle. Not all projects
can afford to use all the methods, and
the exact methods to use will depend on
the project characteristics.

These metamethods may involve a
little extra work up front, but they save
work in the long term and ensure that
our efforts are on the right track to
increase usability, thereby reducing the
risk of truly wasting the main effort.

Prioritizing usability
methods

As a reality check on the practical
applicability of the usability methods
suggested above, I asked 13 usability
engineers to complete a questionnaire.
For each of the methods listed in Table
1. the questionnaire asked whether they
had used itin their most recent develop-
ment project and what impact they felt
the method had on usability in general
(no matter whether they had used it in
their latest project). The respondents
were people actively engaged in usabil-
ity engineering and therefore the num-
bersin Table 1 are not representative of
all development projects. On the con-
trary, most development projects do not
currently have usability engineers on
the development team, and prior re-
search' has shown extraordinarily low
use of usability methods in average de-
velopment projects.

The engineers evaluated the meth-
ods” impact according to the following 1
to 5 scale:

COMPUTER

Table 1. List of usability engineering methods showing the extent to which development projects actually used each method
as well as the average rated importance of each method ona1to 5 scale: 1indicates no impact and 5 indicates absolutely essential.
The list of methodsis ordered according to the approximate placement of the methodsin the usability life cycle.

Logging of user actions on the system

Impact on

Used on Usability

Project in General
Activity or Method (percent yes) (average)
Visit to customer location before start of design 92 4.3
Task analysis of user’s current task 69 4.7
Functional analysis of reason for user’s task 46 3.8
Projection of evolution in user needs and abilities 54 34
Competitive analysis: Looking at existing competing products 77 29
Competitive analysis: Comparative analysis of competing products 23 2.8
Competitive analysis: User testing of competing products 23 3.1
Goal setting: Explicit priorities between usability parameters 38 33
Goal setting: Measurable levels specified for important goals 38 35
Participatory design: Real users involved during the design process 85 4.4
Coordination of the “traditional™ user interface (screens, messages, and so on) 69 4.2
Coordination of the “total” user interface (manuals, training, and so on) 38 4.1
Use of a published vendor (or other de facto) interface standard 23 2.4
Use of in-house user interface standard or house style 69 3.5
Specification of a product identity 38 31
Use of large, general guidelines book 38 2.6
Use of category-specific guidelines for the type of product being developed 31 3.1
Listing and use of product-specific guidelines for the individual product 54 33
Heuristic evaluation (informal judgment based on guidelines) 46 33
Prototyping: Construction of paper mock-ups 46 3.0
Prototyping using computer tools 85 3.9
Empirical testing with real users as subjects 69 4.5
Measurements taken during test and compared with goals 31 33
Thinking-aloud experiments 31 31
Constructive interaction (two users work together) 38 33
Videotaping of user testing (as opposed to just taking notes) 23 29
Questionnaires to assess user attitudes toward the system 38 2.7
[terative design 85 4.7
Explicit documentation of the rationale for the user interface design 46 3.3
Feedback from field use: Record user calls to hot line and so on 54 33
Method exists for users to provide direct feedback to developers 54 3.8
Field study/visit to customers to find out how the system is actuaily used 46 4.3

38 3.0

(1) No impact on usability; it does not
matter whether this is done or not.

(2) Smallimpact,but of noreal impor-
tance.

(3) Medium (and real) impact on im-
proving usability.

(4) Major impact on usability; should
be done in most cases.

(5) Absolutely essential for improving
usability:should be done inall cases.

The reason for surveying usability
engineersinstead of regular developers

March 1992

was to collect views founded on actual
experience with the methods. Even if
we cannot include a full-fledged usabil-
ity engineering methodology in our de-
velopment life cycle, we should at least
choose the methods that usability engi-
neers use or recommended the most.
Actually, almost all the methods got an
impact rating of at least 3, indicating
that they were all judged as having a
real impact on usability. The best ap-
proach would be to use as many meth-
ods as possible. Buteven if we have only

limited resources to invest in usability.
we should still consider some of the
most important methods.

The top five methods according to
frequency of actual use by the usability
engineers are

(1) Visit to customer location before
start of design.

(2-4) Iterative design, participatory
design. and prototyping using comput-
er tools.

21

(5) Competitive analysis: Looking at
existing competing products.

The top six methods according to rat-
ed impact on usability are

(1-2) Iterative design and task analy-
sis of the user’s current task.

(3) Empirical testing with real users
as subjects.

(4) Participatory design.

(5-6) Visit to customer location be-
fore start of design and field study/visit
to customers to find out how the system
is actually used after installation.

Thereis considerable overlap between
the two lists, and there is in general a
fairly high correlation between the use
of the methods and their rated impact
(R = 0.71). The three methods having
the largest residuals in the regression
analysis (indicating a mismatch between
the scores on the two scales) are

* Competitive analysis: Looking at
existing competing products. This seems
to be done too much compared with the
fairly low rated impact. From the im-
pact rating, the regression “predicted”
only 33 percent use.

® Coordination of the “total” user in-
terface (not just screens but also manu-
als, training, and so on). This is done
much too little compared with the high
rated impact. From the impact rating,
the regression “predicted™ 64 percent
use.

® Field study/visit to customers to find
out how the system is actually used. This
is done too little compared with the
high rated impact. From the impact rat-
ing, the regression “predicted™ 69 per-

cent use.
I cycle requires the use of a large
large number of usability
methods to follow the complete set of
recommendations given here. Often
budget or time constraints will not al-
low the use of all the methods. but 1
recommend the following as a mini-
mum:

he usability engineering life

e visit customer locations before the
start of the project,

e do iterative and participatory de-
sign, and

* use prototyping and empirical tests
with real users.

N

The single most important advice re-
garding usability engineering is simply
to get started now. It is easy to get so
overwhelmed by the complete usability
engineering life cycle that we decide to
wait until the next project, in which
there will surely be more time for us-
ability considerations. Unfortunately,
the “next time” can easily be put off
againand again. Instead, we should start
with a few of the simpler methods right
away and then gradually extend the
scope of usability activities until the
entire life cycle is covered. Such a grad-
ual approach is more likely to succeed
than an “all-or-nothing™ approach.

The world is full of useless and frus-
trating software with functionality and
user interfaces that could have been
improved if their designers had used
current usability engineering methods.
The world is even full of frustrating
alarm clocks, video recorders, and oth-
er appliances that could stand a dose of
usability engineering. Please don’t let
vour users suffer needlessly. Bl

Acknowledgments

I'thank Rita Bush, Tom Dayton. Tom Land-
auer, Alan McConkie, Amy Todres, Daniel
Wildman, and several anonymous Computer
referees for insightful comments on earlier
versions of the manuscript.

References

1. 1.D. Gould and C.H. Lewis, “Designing
for Usability: Key Principles and What
Designers Think,” Comm. ACM, Vol.
28, No. 3. Mar. 1985, pp. 300-311.

2. J. Whiteside. J. Bennett, and K. Holtz-
blatt, “Usability Engineering: Our Expe-
rience and Evolution,” in Handbook of
Human-Computer Interaction, M. He-
lander. ed.. Elsevier Science Publishers,
Amsterdam. 1988, pp. 791-817.

3. I. Nielsen. Usability Engineering, Aca-
demic Press. San Diego. Calif., 1992.

4. B.W. Boehm. "A Spiral Mode! of Soft-
ware Development and Enhancement.”
Computer. Vol. 21. No. 5, May 1988. pp.
61-72.

5. J. Grudin, S.F. Ehrlich. and R. Shriner,
“Positioning Human Factors in the User

Interface Development Chain,” Proc.
ACM CHI+GI 87, Conf. Human Factors
in Computing Systems and Graphics In-
terface. ACM. New York, 1987, pp. 125-
131.

6. J. Nielsen, ed.. Coordinating User Inter-
faces for Consistency, Academic Press,
San Dicgo. Calif.. 1989.

7. J.Nielsenand R. Molich, “Heuristic Eval-
uation of User Interfaces,” Proc. ACM
CH! 90. Conf. Human Factors in Com-
puting Systems. ACM, New York, 1990,
pp- 249-256.

8. F.P. Brooks. The Mythical Man-Month:
Essays on Software Engineering, Addi-
son-Wesley. Reading, Mass.. 1975.

9. R.A. Virzi, “What Can You Learn from
a Low-Fidelity Prototype?” Proc. Hu-
man Factors Soc. 33rd Ann. Meeting.
Human Factors Society, Santa Monica,
Calif.. 1989, pp. 224-228.

10.

=

J.Conklinand M.L. Begeman, “gIBIS: A
Hypertext Tool for Exploratory Policy
Discussion,™ ACM Trans. Office Infor-
mation Systems, Vol. 6. No. 4. Oct. 1988,
pp. 303-331.

11. M.M. Mantei and T.J. Teorey, "Cost-
Benefit Analysis for Incorporating Hu-
man Factors in the Software Life Cycle.”
Comm. ACM. Vol. 31.No. 4. Apr. 1988,
pp. 428-439.

12. C-M. Karat, “Cost-Benefit Analysis of
[terative Usability Testing,” Proc. IFIP
Interact 90, Third Int'l Conf. Human-
Computer Interaction JIFIP, Geneva, 1990,
pp- 351-356.

Jakob Nielsen is a member of the technical staff
at Bellcore (Bell Communications Research).
His research interests include usability engi-
neering. hypertext. and next-generationinter-
action paradigms. His previous affiliations in-
clude the IBM User Interface Institute at the
T.J. Watson Research Center and the Technical
University of Denmark. Niclsen holdsaPhDin
computerscience/user interface designandis a
member of ACM. the Human Factors Society,
and the IEEE.

Readers can contact Niclsen at Bellcore.,

MRE-2P370, 445 South Street. Morristown,
NJ07962-1910, e-mail nielsen@bellcore.com.

COMPUTER

