
How Can CAS
Help?
A Look at the
Feasibility of
Supporting
Structured
Analysis with
CASE

David Jankowski
California State University,

San Marcos

Abstract

One important role of a CASE too/is to serve as
a methodology companion - - to assist an
analyst in the creation of documentation passed
to succeeding phases of the fife cycle and to
guide the analyst through a particular systems
development methodology. While many vendors
c/aim their CASE products supports a particular
methodology, the actua/ /eve/ of support varies
greatly from one CASE too/to another and, for a
particular too/, the/eve/of support varies among
the rules of the methodo/ogy.

The feasibility of using CASE to provide
automated checking for the rules of structured
ana/ysis is presented within the context of a
framework for examining CASE methodology
support. Two popu/ar CASE tools are compared
against a feasibility benchmark by examining
system specifications created using the tools.
The resu/ts indicate that methodologically
consistent specifications are more likely to be
achieved when the methodology support
provided by the CASE too/ is as rigorous as
possib/e.

ACM Categories: D.2.2
Keywords: computer-aided systems engineer-
ing tools, systems development methodologies

Introduction

ili One important role of a CASE tool is to serve as
ii/ a methodology companion m to assist the user

in the creation of documentation passed to
,~ii'l succeeding phases of the life cycle and to guide
i~i the user through a particular systems
i! development methodology (McClure, 1989). The
~., level of methodology assistance provided by a
! ~; CASE tool varies from product to product and
ii! may include graphics support for various
iJ! diagramming techniques; a data dictionary for
!t storing entities associated with a systems

project; and automated checks, which serve to
enforce a particular methodology and help

~ ensure the completeness and consistency of the
:'~ resulting specifications. Unfortunately, while
~ many vendors claim their CASE product

supports a particular information systems
'd development methodology, the actual level of
I methodology support varies greatly from one

CASE tool to another and, for a particular tool,
~ the level of support varies among the rules of the

The DATA BASE for Advances in Information Sys tems- Fall 1997 (Vol. 28, No. 4) 33

methodology. Further, the level of methodology
support provided by the tools is often cited as
being insufficient (Crosslin, Bergin, & Stott, 1993;
Henderson & Cooprider, 1990, p. 251; Loy,
1993, p. 31; Sumner, 1993).

In this paper, a framework for classifying CASE
methodology support is proposed and applied to
structured analysis methodology rules. The
framework is then used to determine the
feasibility of automating the structured analysis
methodology. Next, the structured analysis
methodology support provided by two popular
commercial CASE products is displayed using
the framework. 1 Finally, some preliminary
research into the influence different levels of
CASE methodology support has upon the
functional specification is presented.

The goal of this discussion is to advance the
literature concerning CASE tools and their
influence on system specification quality and to
provide some insight into how CASE can
improve productivity by eliminating much of the
labor - - intensive task of completeness and
consistency checking of specifications. By pro-
viding designers, programmers, and/or code
generators with methodologically correct speci-
fications, system quality can be improved.

From the proposed framework, hypotheses may
be generated and tested in an attempt to
determine the "optimal" level of methodology
support provided by CASE tools. Further, CASE-
tool selection criteria, of which support for a
particular methodology is an important criteria
(Everest & Alanis, 1992), will be refined by
identifying differences in the level of
methodology feedback provided by the CASE
products.

A Framework for Classifying Case
Methodology Feedback

The first substantial work aimed at classifying
CASE tools based upon their level of
methodology support was presented in Vessey,
Jarvenpaa, and Tractinsky (1992). Using

1 Structured analysis was chosen to illustrate an application
of the framework due to its popularity in the professional
world. However, any technique, methodology (including a
custom methodology), or subset thereof can be used.
Similarly, the framework can be applied to any number of
CASE tools.

terminology taken from the decision support
system literature, the authors described CASE
methodology support as being restrictive,
guided, or flexible. A restrictive CASE tool is
described as being "designed to encourage the
user to use it in a normative manner" (p. 92). A
guided CASE tool is described as being
"designed to encourage, but not to enforce, the
user to use it in a normative way" (p. 92). A
flexible CASE tool is described as being
"designed to allow the user complete freedom in
using it" (p. 92). After defining their framework,
Vessey et al. (1992) apply it to twelve PC-based
CASE tools. Each CASE tool was examined and
results were reported with respect to a set of
seventeen methodology rules for data flow
diagrams identified from systems analysis and
design texts. CASE tools were labeled as
"restrictive," "guided," or "flexible" based upon
the number of rules implemented in a restrictive
fashion.

The framework described in Vessey et al. (1992)
was a positive step toward classifying CASE
methodology support; however, there are
portions of their framework that can be refined.
First, the three levels of support defined by the
authors leave out several possible means of
providing methodology support. For example,
many CASE tools allow the user to perform
methodology checks on request while creating a
product (e.g., a data flow diagram). The Vessey
et al. framework does not consider this fre-
quently encountered means of providing metho-
dology support. Second, their differen-tiation
between checks made after exiting a "technique"
versus exiting a "phase" (in either case the user
no longer has direct access to the product) and
displaying a violation as an "error" versus a
"warning" (in either case the user is left with the.
decision to accept or ignore the support of the
CASE tool) is primarily semantic.

The application of the Vessey et al. framework
can also be refined. First, their classification of
CASE tools is based upon counting data
(specifically, the number of rules enforced in a
restrictive fashion); i.e., Tool A is considered to
be "more restrictive" than Tool B simply because
it has more restrictive methodology rules in its
rule base. This assumption fails to take into
account the fact that there may be a particular
rule, or subset of rules, that contribute more to
the consistency and quality of the specifications

34 The DATA BASE for Advances in Information S y s t e m s - Fall 1997 (Vol. 28, No. 4)

than any other rule(s). While Tool B may have
fewer rules in its rule base than Tool A, Tool B
may have rules in its rule base that are not found
in the rule base of Tool A. The authors
acknowledge this potential shortcoming by
indicating that their three categories may not
accurately describe CASE methodology support.

Second, labeling a CASE tool as "restrictive"
may cause a prospective user to lose sight of the
fact that CASE tools do not implement every rule
in their rule base in the same fashion. For a
particular CASE tool, some of the rules may be
enforced in a "restrictive" manner, some may be
enforced in a "guided" manner, some may be
enforced in a "flexible" manner, and some may
not be enforced at all. For example, Vessey et
al. label Visible Analyst Workbench 1.8 as
"restrictive" even though only 11 of the 17
identified rules are enforced by the tool. Of these
11 rules, only three are identified as being
enforced in a restrictive fashion. As will be
discussed in the next section, it is not feasible to
enforce all rules in a "restrictive" manner;
therefore, it may not be prudent to label a CASE
tool as being "restrictive," "guided," or "flexible."

In order to refine the Vessey et al. (1992)
framework, components of feedback have been
identified in the computer-aided instruction (CAI)
literature and applied to CASE tools. Feedback
is defined 13y Kowitz and Smith (1985) to be "a
message. . , which is evaluative and intended to
improve the functioning of a system" (p. 4).

The CAI hterature identifies four components,
which, taken together, define computer feedback
for a process or product: 1) immediacy, which
indicates when the feedback is provided
(Steinberg, 1991); 2) solicitation, which indicates
how the feedback is received (Bereiter &
Scardamalia, 1987); 3) content, which indicates
why the feedback is being provided (Wager &
Wager, 1985); and 4) response, which indicates
what the required reaction to the feedback must
be (Sassenrath, 1975). In the following
subsection, these components of feedback are
examined within the context of CASE
methodology support.

Restrictive Feedback

Restrictive methodology feedback can be
defined as any feedback that requires the user to
adhere to the rules of a chosen methodology.

The immediacy of the feedback refers to when a
rule violation is presented. Methodology
feedback that is restrictive will be presented as
soon as is feasible to do so in order to keep any
methodology violation from propagating through
the system specification. This implies that rule
violations must be detectable while in the
process of performing a specific task, such as
data flow diagramming (level 1 restriction). Other
rule violations may not be detectable until a task
is finished (e.g., while saving a DFD and/or
exiting the diagramming tool). This second level
of restrictive feedback (level 2 restriction) is
necessary in order to prevent the user from
being interrupted by mistaken violations that are
actually attributable to work in progress.

The solicitation of a rule refers to the mechanism
by which the rule violation is presented.
Feedback that is implemented in a restrictive
fashion by a CASE tool will automatically present
itself as soon as the CASE tool detects a
violation. With the goal of restrictive feedback
being to force the user to conform to the rules of
a particular methodology, it is important that the
content of the feedback be context sensitive.

The response refers to the set of options
available once the CASE tool has presented the
feedback. Restrictive feedback will require the
user to address the feedback and correct the
violation before proceeding.

In summary, rule feedback will be considered to
be implemented within the CASE tool in a
restrictive fashion if the user is automatically
presented with context sensitive feedback while
using an operator, or while terminating use of an
operator, and is forced to address the feedback
before proceeding.

Guided Feedback

The second type of methodology feedback
available from a CASE tool is guided feedback.
Guided feedback can be defined as any
feedback that guides the user in executing a
systems development methodology by assisting
the user in using its methods. A CASE tool's
feedback may guide the execution of the
systems development process by providing the
user with suggestions and information regarding
the procedures of a particular systems
development activity as well as the resultant
product of that activity.

The DATA BASE for Advances in Information Systems - - Fall 1997 (Vol. 28, No. 4) 35

Two types of guided feedback can be made
available by a CASE tool: active guidance and
passive guidance. Active guidance is informative
and suggestive advice that is unsolicited, i.e., the
CASE tool delivers the feedback when it detects
a need for guidance. Active guidance can be
provided by the CASE tool while the user is
performing a particular task (level 1 active
guidance) or it may be provided by the CASE
tool when a task is complete (e.g., while saving
and/or exiting) (level 2 active guidance). The
feedback may be pre-sented in the form of an
error notification and/or suggestion for correcting
the violation. It is then left to the discretion of the
user to determine whether or not to correct the
violation.

The second type of guided feedback provided by
a CASE tool is passive guidance. Passive
guidance is informative and suggestive advice
that is solicited from the CASE tool by the user.
Passive guidance may be requested while
performing a task (level 1 passive guidance) or it
may be implemented as a separate function
outside of the task (level 2 passive guidance). As
with active guidance, feedback may be
presented in the form of error notifications and/or
suggestions for correcting the violations.

Flexible Feedback

Finally, an alternative to embedding restrictive
and guided feedback within a CASE tool is

flexible feedback or the complete lack of support
for a methodology or a particular methodology
rule. The methodology feedback available from a
CASE tool is summarized in Table 1.

Feasibility of Case Support for
Structured Analysis
By adopting a particular systems development
methodology and mandating its use, an
organization is expecting the products of the
systems development activities to conform to the
chosen methodology. To achieve the objective of
methodology prescription, an organization, in
theory, should be able to purchase a CASE tool
that supports the chosen methodology. How-
ever, the concept of methodology support can be
handled differently from one CASE tool to
another. Further complicating the issue is the
fact that some methodology rules cannot, for
practical reasons, be implemented in a restrictive
fashion.

When discussing the enforcement of metho-
dology rules via restrictive feedback, the conflict
between an actual methodology violation and
work in progress must be addressed. The CASE
tool should not interrupt the work to report a
violation if the suspected violation may be a
symptom of unfinished work. To account for this,
a rule violation that may be the result of
unfinished work should be handled in one of two
ways: 1) the violation can be automatically

Level 1
Restriction
Level 2
Restriction
Level 1
Active
Guidance
Level 2
Active
Guidance
Level 1
Passive
Guidance
Level 2
Passive
Guidance

Immediacy
Creation

Exit/Save

Creation

Exit/Save

Creation

Post-Method

Automatic

Automatic

Automatic

Automatic

Request

Request

Content
i Context Sensitive
E
i Context Sensitive

i Context Sensitive or
i Simple Notification

i Context Sensitive or
i Simple Notification
i
} Context Sensitive or
t Simple Notification I
i

i Context Sensitive or
i Simple Notification !
i

Response
Mandatory

Mandatory

Override

Override

Override

Override

Table 1. CASE Methodology Support Framework

36 The DATA BASE for Advances in Information Systems - - Fall 1997 (Vol. 28, No. 4)

.e!,l .e1,2 Lel, 1 .evL, 2 .el, 1 .el, 2 N!t
Restriction Restriction Active Active Passive Passive Implemented

Guidance Guidance Guidance Guidance

~,.~ Stronger Weaker

Figure 1. Spectrum of CASE Methodology Enforcement

presented when saving a diagram or exiting the
diagramming tool (level 2 active guidance), or 2)
the violation is presented upon the request of the
user (level 1 or level 2 passive guidance). In
either of the above methods, the user is not
bothered with an erroneous interruption while
drawing the diagram. Notification of violations via
active guidance would have the probable effect
of identifying possible inconsistencies earlier
than would passive guidance; however, active
guidance might also prove to be a nuisance by
forcing the user, every time a diagram is saved,
to read through a list of violations that can be
attributed to unfinished work.

The remainder of this section examines the
feasibility ar, d practicality of automating 28 rules
of structured analysis. The rules (presented in
Appendix A', were compiled from several popular
systems analysis and design textbooks, one
being, Edward Yourdon's Modern Structured
Analysis (1989). The feasibility of automating
these 28 structured analysis methodology rules
(presented with the rules in Appendix A) is
reported with respect to the spectrum shown in
Figure 1. The spectrum displays methodology
feedback, arranged in order of strong to weak
enforcement rigidity. For the methodology rules,
implementation feasibility can propagate to the
right, but not to the left, of the spectrum.

Table 2 summarizes the methodology rule
enforcement feasibility presented in Appendix A.
From Table 2, it is clear that categorizing a
CASE tool as "restrictive" is inappropriate. Eight
of the twenty-eight methodology rules cannot be
feasibly implemented in a restrictive fashion. Of
the 20 rules that can be implemented restric-
tively, four of them may be more appropriately
enforced using passive guidance. It should also
be noted that some form of methodology

enforcement is possible for all of the 28 rules
investigated in this study.

Application of the Framework

Vessey et al.'s (1992) evaluation included two
popular CASE tools, Intersolv's Excelerator
(Version 1.8) and Visible Systems's Visible
Analyst Workbench (VAW) (Version 3.0). The
authors categorized Excelerator as one of the
two most flexible CASE tools in their study and
VAW as one of the two most restrictive CASE
tools in their study. Utilizing more recent
versions of these CASE tools - - Excelerator 1.9
and Visible Analyst Workbench 3.1 - - and the
28 rules presented in the Appendix A (Vessey et
al. report their findings based on 17 methodology
rules), the framework presented in the previous
section has been applied to the two CASE tools
and is summarized in Table 3. 2 Methodology
enforcement for the tools was initially determined
through the vendor-supplied documentation. The
author, through personal use of the tools, then
verified the documentation.

From Table 3, it can be seen that the two CASE
tools are quite different in their approach to
enforcing the structured analysis methodology
rules. While the size of their respective rule
bases is nearly the same (19 rules for VAW, 18
rules for Excelerator), it would be inappropriate
to state that the two CASE tools support
structured analysis in the same manner. In fact,
the intersection of the rule bases of the two
CASE tools contains no rules that are enforced
in an identical fashion (the two tools share three
rules [rule nos. 1, 3, and 6] that are not
implemented).

2 For a discussion of the methodology rule enforcement
implementation mechanism for Excelerator 1.9 and YAW
3.1, see Jankowski (1994).

The DATA BASE for Advances in Information Systems - - Fall 1997 (Vol. 28, No. 4) 37

Level 1 Level 1 Level 1 Level 2 Level 2 Level 2 Not
Restriction Active Passive Restriction Active Passive Feasible

Guidance Guidance Guidance Guidance

* Se? Section 3, paragraph 2, for a discussion of rules with multiple levels of enforcement feasibility.

38

Table 2. CASE Tool Methodology Enforcement Feasibility

The DATA BASE for Advances in Information Systems - Fall 1997 (Vol. 28, No. 4)

During Creation During Exit/Save I Post-

-t-

Automatic Automatic Method

Rule 3,landatory Override On Mandatory Override On

- Request Request

Level 1 Level 1 Level 1 Level 2 Level 2 Level 2

?estriction Active Passive Restriction Active Passive
- . - . . ^ . . ^ . .

Not
Implemented

wrdance Guraance Cjuraance tiuraance

* Exceleratcl 1.9 may not detect special cases of this violation. **Excelerator 1.9 does not support slit data flows

VAW 3.1 iii i i//i l l i i i l l i l l i i Excelerator ’ .g - Both CASE TCm’s

Table 3. Visible Analyst Workbench 3.1 and Excelerator 1.9 Methodology Enforcement

The DATA BASE for Advances in Information Systems - Fall 1997 (Vol. 28, No. 4) 39

It can also be noted from Table 3 that it is
inappropriate to apply a label such as
"restrictive" or "guided" to either of these CASE
tools. VAW implements only 11% (3 of 28) of the
rules in a restrictive fashion, 57% (16 of 28) are
implemented in a guided fashion (level 1 active
and level 1 passive guidance), while the
remaining 32% (9 of 28) of the rules are not
implemented. Excelerator implements 64% (18
of 28) of the rules in a guided fashion (level 2
passive guidance), while the remaining 36% (10
of 28) of the rules are not implemented. While
both CASE tools claim to support Yourdon
structured analysis it is clear that their respective
implementations of the methodology are quite
different.

Research Results

Since the advent of CASE, the idea that systems
analysts will be more productive and systems
development deliverables will be of better quality
has been debated. Several case studies have
been published that investigate such factors as
the acquisition of CASE, the acceptance of
CASE, and the influence CASE may have on
maintaining systems. However, there has been
virtually no published work, especially experi-
mental, that investigates the influence of CASE
methodology support on the output of systems
development activities. The author uses the
framework presented in the previous section to
examine the influence of CASE methodology
feedback on the output of structured analysis
(1994).

Sixteen project teams used Excelerator 1.9 and
VAW 3.1 (eight project teams per tool) to create
a functional specification for a hotel information
system. The subjects were undergraduate
(seniors) management informa-tion systems
majors. Prior to beginning the study, the subjects
received classroom training in structured
analysis and performed several exercises
requiring them to use structured analysis. The
subjects next received classroom and laboratory
instruction for their assigned CASE tool. The
subjects, using their assigned CASE tool,
replicated structured analysis exercises that had
originally been performed with pencil and paper.

After having received methodology and CASE
training, the subjects received a requirements
specification for a hotel reservation system. The

specification was taken from JAD training
materials used by a major information systems
consulting organization. The subjects were
required to use their assigned CASE tool in
support of structured analysis to create a
functional specification, consisting of data flow
diagrams, a data dictionary, and primitive
process specifications, for the reservation
system. Subjects were motivated to perform the
task by the fact that the functional specification
was the major component of a two-month term
project for their systems development course.

At the conclusion of the project, the number of
violations of each of the 28 methodology rules
was determined from the specifications. It was
hypothesized that the number of violations of a
particular rule would be dependent upon the type
of feedback provided for that rule, i.e., a rule with
restrictive feedback would be violated less
frequently than a rule with guided feedback.
Results of the ANOVA tests for the 28
methodology rules are presented in Table 4. The
principal research results are:

a) Regardless of the type of feedback provided,
rules pertaining to the internal consistency
(rules 1-18) of a data flow diagram are rarely
violated (for 13 of the 18 rules there were no
violations). This result is consistent with
previous studies (e.g., Yellen, 1990) which
are characterized by small projects that have
little chance to examine hierarchical relation-
ships, comparing the use of CASE to draw
DFDs versus drawing DFDs by hand. These
studies have found no difference between
treatments and, in some cases, diagrams
drawn by hand (implying no automated
methodology support) were "better" than
those drawn with the aid of CASE.

b) Adherence to the hierarchical consistency
rules (i.e., the relationship between diagrams
or between a diagram and the dictionary;
rules 19-28) is more dependent than
adherence to the internal consistency rules
upon the feedback provided by the CASE
tool. Unlike the internal consistency rules,
which are applied to only one diagram at a
time, the hierarchical consistency rules may
not be easily verified by a visual inspection
of a single data flow diagram. As the system
becomes more complex, the number of
"links" between the diagram levels grows

40 The DATA BASE for Advances in Information S y s t e m s - Fall 1997 (Vol. 28, No. 4)

Rule

Predicted Number
of Violations

Actual (mean)
Number of Violations

VAW Excelerator
Significance*

1 VAW = Excel. 0.00 0.00

2 VAW > Excel. 0.00 0.00

3 VAW = Excel. 0.00 0.13 .3343

4 VAW < Excel. 0.00 0.00

5 VAW < Excel. 0.00 0.00

6 VAW = Excel. 0.00 0.00

7 VAW < Excel. 0.00 0.75 .0004

8 VAW < Excel. 0.13 0.63 .1080

9 VAW < Excel. 0.00 0.00

10 VAW < Excel. 0.00 0.00

11 VAW < Excel. 0.00 0.00

12 VAW < Excel. 0,00 0.00

13 VAW < Excel. 0,00 0.00

14 VAW < Excel. 0.00 0.00

15 VAW > Excel, 5.50 29.75 .0023

16 VAW < Excel. 0.00 0.00

17 VAW < Excel, 1.50 0.38 .2620

18 VAW < Excel. 0.00 0.00

19 VAW < Excel. 0.00 1.13 .0230

20 VAW > Excel. 0.75 0.13 .3396

21 VAW < Excel. 0.00 0.50 .3343

22 VAW < Excel. 0.75 10.38 .0181

23 VAW < Excel. 3.13 12.25 .1251

24 VAW < Excel. 0.00 0.00

25 VAW > Excel. 10.75 20.38 .2850

26 VAW > Excel. 0.00 0.00

27 VAW > Excel. 16.50 11.75 .1633

28 VAW < Excel 0.00 7.88 .0905

*Entries in bold indicate a significance at an c~ of 0.05.

Table 4. Summary of Comparison of Rule Violations Between CASE Tools

exponentially. As the number of levels in a n and level n+l increases in an amount
data flow diagram set increase the difference proportional to x n÷l where x is the number of
between the number of processes (and data processes on level n. As the size of the
flows into and out of the processes) on level domain to be verified increases, the

The DATA BASE for Advances in Information Systems - - Fall 1997 (Vol. 28, No. 4) 41

c)

opportunity for a methodology rule violation
to occur also increases, thus necessitating a
greater level of methodology assistance from
the CASE tool.

There is virtually no difference between
providing level 2 passive guidance and no
feedback at all (rules 2, 15, 20, 25, 26, 27).
This indicates that level 2 passive guidance
may provide an insignificant amount of
improvement in the quality of the functional
specification beyond what the analyst can
deliver by performing visual inspections of
the data flow diagrams. However, level 1
passive guidance was found to be better
than level 2 passive guidance (rules 22, 23)
when checking hierarchical consistency.
This indicates that being able to obtain
guidance while working on a data flow
diagram may be more helpful than being
forced to exit the diagramming tool before
obtaining guidance.

Implications for Systems
Development

The systems development waterfall life cycle is
an orderly model for managing the systems
development activities, with the output of each
phase of the model being used as the input of
the succeeding phase. The structured
techniques are a set of methodologies used to
implement each of the phases of the life cycle.
The output of structured analysis, the functional
specification, becomes the input to structured
design. One of the activities of the design phase,
which can be implemented via structured design,
is the construction of the program structure
through a transformation of the functional
specification. This transformation, known as
transform analysis or transaction analysis,
results in the creation of a set of structure charts.
By utilizing the levels of the data flow diagrams,
the structure charts are constructed in a top-
down, hierarchical fashion, with the structure
chart modules corresponding to data flow
diagram processes and the structure chart data
couples corresponding to data flow diagram data
flows. Once the structure charts are complete,
the modules are defined by expanding the
primitive process specifications to include
controls, error flags, and other input and output
processing details.

Because the structure charts are derived directly
from the data flow diagrams, it is crucial that the
data flows be properly displayed on the data flow
diagrams. In particular, when a process is
decomposed, its input and output data flows
must be propagated to the next diagram level. A
failure to propagate the data flows correctly
through the data flow diagrams will result in
incorrectly specified structure charts. Similarly, in
order for the structure chart modules to be
correctly specified, input and output data flows to
the primitive processes must be propagated to
the primitive process specifications.

From Table 4, it is seen that five of the 28
methodology rules (15, 22, 23, 25, 27) were
violated far more frequently than any of the other
rules. These five rules all influence the data
flows (or their composition) and their inter-
diagram relationships with processes and
primitive process specifications. Of these five
rules, the three violated most frequently (15, 25,
27) were not enforced by Visible Analyst
Workbench and were enforced with Level 2
Passive Guidance by Excelerator. The remaining
two rules (22, 23) were violated extensively by
the Excelerator groups (supported with Level 2
Passive Guidance) but had very few violations
among the VAW groups (supported by Level 1
Passive Guidance). Clearly, in order to ensure
the consistency and correctness of the structure
charts derived from the functional specification, it
is important to provide support for the metho-
dology rules that apply to the leveling of the data
flow diagrams.

Implications for Systems Analysts

While the embedding of systems development
methodology rules in CASE tools has been
shown in this study to be an effective means of
enforcing a development methodology, many
advocates of automated development tools
argue that restriction and/or guidance of the
analyst must not be implemented at the expense
of the analyst's ability to be creative. Crow
(1990) argues that the decision to implement
methodology support should take a back seat to
creativity: "Creativity cannot be stifled" (p. 14).
Page-Jones (1992) contends that many CASE
tools are "draconian in their degree of
methodology enforcement" (p. 38). Davis (1982)
acknowledges that there exist situations when

42 The DATA BASE for Advances in Information S y s t e m s - Fall 1997 (Vol. 28, No. 4)

"detailed structure" may be necessary. However,
he cautions that there are also situations when
detailed structure may be "inhibiting and
frustrating" (p. 12).

Adelson and Soloway (1985) state that the level
of support provided for an analyst by a tool
should reflect the experience of the analyst with
the problem domain and the design technique.
Nunamaker, Dennis, Valacich, Vogel, and
George (1993) advocate tools with a balance
between restriction and flexibility, and indicate
that too much restriction can "constrain creativity
and exploration" (p. 135). Vessey et al. (1992)
address the influence of CASE tool restriction
and guidance on analyst creativity by advocating
a development environment that adapts to the
experience of the analyst.

Because the subjects in this study were all
"novice" analysts, data collection from a more
diverse pool of systems analysts is needed
before substantive conclusions can be made
about the effects of CASE methodology support
on analyst creativity.

Conclusion

Computer-aided systems engineering tools have
the potential to improve system quality and
increase productivity. Unfortunately, this poten-
tial has largely gone unrealized. The lack of
methodology support offered by commercial
CASE products may be seen as one of the
barriers to CASE fulfilling its potential. The
support classification presented here may be
used to compare CASE tools that claim to
support structured analysis, and can be easily
extrapolated to other methodologies.

The results presented here indicate that CASE
tools may be able to loosen up the enforcement
of the rules that apply to the internal consistency
of a DFD, allowing the allowing the freedom to
be more creative. However, due to the
complexity of the relationships between the
DFDs, the data dictionary, and the primitive
process specifications, the enforcement of the
rules pertaining to the hierarchical consistency
could be tightened. Further research, conducted
with different tools, different levels of feedback,
and different skill levels of analysts (with respect
to a particular methodology) may enable the
determination of an optimal set of feedback

mechanisms to ensure
consistency of specifications.

methodological

References

Adelson, B., and Soloway, E. (1985). "The Role
of Domain Experience in Software Design,"
IEEE Transactions on Software Engineering.
SE-11, pp. 1351-1360.

Bereiter, C., and Scardamalia, M. (1987). The
Psychology of Wri t ten Composition.
Hillsdale, N J: Erlbaum.

Crosslin, R. L., Bergin, T. J., and Stott, J. W.
(1993). "Critical Factors Influencing the
Future of Computer-aided Software Engi-
neering," in T. J. Bergin (Ed.), Computer-
aided Software Engineering: Issues and
Trends for the 1990s and Beyond.
Harrisburg, PA: Idea Group, pp. 616-637.

Crow, G. B. (1990). BriefCASE - - The
Collegiate Systems Development Tool.
Cincinnati, OH: South-Western.

Davis, G. B. (1982). "Strategies for Information
Requirements Determination," IBM Systems
Journal. Vol. 21, No. 1, pp. 4-30.

Everest, G. C., and Alanis, M. (1992). "Assess-
ing User Experience with CASE Tools: An
Exploratory Analysis," in J. F. Nunamaker,
Jr. (Ed.), Proceedings of the 25th Hawafi
International Conference on System
Sciences, Los Alamitos, CA: IEEE Computer
Society Press, pp. 343-352.

Henderson, J. C., and Cooprider, J. G. (1990).
"Dimensions of I/S Planning and Design
Aids: A Functional Model of CASE
Technology," Information Systems Re-
search. 1, pp. 227-254.

Jankowski, D. J. (1994). "Computer-Aided
Systems Engineering Methodology Support
and Its Effect on the Output of Structured
Analysis," unpublished doctoral dissertation,
University of Arizona, Tucson, AZ.

Kowitz, G. T., and Smith, J. C. (1985). "The
Dynamics of Successful Feedback," Perfor-
mance and Instruction. 24(8), pp. 4-6.

Loy. P. (1993). "The Method Won't Save You
(But It Can Help)," Software Engineering
Notes. Vol. 18, No. 1, pp. 30-34.

McClure, C. (1989). CASE Is Software
Automation. Englewood Cliffs, N J: Prentice
Hall.

Nunamaker, J. F., Jr., Dennis, A. R., Valacich, J.
S., Vogel, D. R., and George, J. F. (1993).

The DATA BASE for Advances in Information Systems - - Fall 1997 (Vol. 28, No. 4) 43

"Group Support Systems Research:
Experience from the Lab and Field," in L. M.
Jessup & J. S. Valacich (Eds.), Group
Support Systems. New York: MacMillan, pp.
125-145.

Page-Jones, M. (1992). "The CASE Manifesto,"
CASE Outlook. 6(1), pp. 33-42.

Sassenrath, J. M. (1975). "Theory and Results of
Feedback and Retention," Journal of
Educational Psychology. 67, pp. 894-899.

Steinberg, E. R. (1991). "Computer-Assisted
Instruction," A Synthesis of Theory, Practice,
and Technology. Hillsdale, N J: Lawrence
Erlbaum Associates.

Sumner, M. (1993). "Factors Influencing the
Adoption of CASE," in T. J. Bergin (Ed.),
Computer-Aided Software Engineering:
Issues and Trends for the 1990s and
Beyond. Harrisburg, PA: Idea Group, pp.
130-155.

Vessey, I., Jarvenpaa, S. L., and Tractinsky, N.
(1992). "Evaluation of Vendor Products:
CASE Tools as Methodology Companions,"
Communications of the ACM. Vol. 35, No. 4,
pp. 90-105.

Wager, W., and Wager, S. (1985). "Presenting
Questions, Processing Responses, and
Providing Feedback in CAI," Journal of
Instructional Development. Vol. 8, No. 4, pp.
2-8.

Yellen, R. E. (1990). "Systems Analysts
Performance Using CASE Versus Manual
Methods," in J. F. Nunamaker, Jr. (Ed.),
Proceedings of the 23rd Hawafi International
Conference on System Sciences. Los
Alamitos, CA: IEEE Computer Society
Press, pp. 497-500.

Yourdon, E. (1989). Modem Structured Analysis.
Englewood Cliffs, N J: Yourdon Press.

A b o u t the A u t h o r

David Jankowski is an assistant professor of
management information systems at California
State University, San Marcos. He received his
Ph.D. from the University of Arizona. Prior to his
graduate studies, he was a software engineer for
a Southern California defense contractor. His
research interests include the use of CASE
technology in developing information systems,
and information systems education. His research
has been published in Journal of Computer
Information Systems, Journal of Systems
Management, and Journal of Information
Systems Education. E-mail: doctorj@csusm.edu

A p p e n d i x A

Structured Analysis Methodology Rules and Automation Feasibility

Process Rule
1. A parent process must be specified before a child process. This is the only methodology rule that

enforces the process of top-down design. This rule may be restrictively (Level 1) enforced by a CASE
tool by not allowing processes to be linked posthoc; i.e., the only way new processes (with the
exception of the context diagram process) may be created is through the decomposition and
subsequent refinement of a parent process.

Product Rules - - Data Flow Diagram (Internal Consistency)
2. A data flow diagram must have at least one process. This rule cannot be enforced in a restrictive

fashion because doing so will not take into account unfinished work. For example, a diagram in
progress may contain data flows and data stores but not processes. Active guidance (Level 2) can be
provided while saving the diagram or exiting the diagramming tool. Passive guidance (Level 1 or Level
2) can be provided if the user does not wish to be distracted with automatic internal consistency
checks on work in progress.

3. A data flow diagram must have no more than seven processes. This rule can be restrictively
(Level 1) enforced by a CASE tool by not allowing the user to access a new process symbol if seven
processes already exist on the data flow diagram.

44 The DATA BASE for Advances in Information Sys tems - Fall 1997 (Vol. 28, No. 4)

Product Rules - - Context Diagram (Internal Consistency)
4 A context diagram must exist. This rule can be restrictively (Level 1) enforced by a CASE tool by

defining the first data flow diagram to be the context diagram and applying all other context diagram
rules to this diagram.

5. The context diagram must contain only one process. This rule can be restrictively (Level 1)
enforced by a CASE tool by not allowing the user to access a new process symbol if a process
already exists on the diagram. However, the requirement that the context diagram must have a
process cannot be restrictively enforced in order to account for unfinished work. Active guidance
(Level 2) can be provided while saving the diagram or exiting the diagramming tool. Passive guidance
(Level 1 or Level 2) can be provided if the user does not wish to be distracted with automatic internal
consistency checks on work in progress.

6 The context diagram must contain at least one input from an external entity and one output to
an external entity. This rule cannot be enforced in a restrictive fashion because doing so will not take
into account unfinished work For example, an unfinished context diagram might contain input from an
external entity but no output to an external entity. Active guidance (Level 2) can be provided when
saving the diagram or exiting the diagramming tool. Passive guidance (Level 1 or Level 2) can be
provided if the user does not wish to be distracted with automatic internal consistency checks on work
in progress.

7. The context diagram process must be numbered zero (O). This rule can be restrictively (Level 1)
enforced by a CASE tool by automatically numbering the context process for the user when the
process is created, and not allowing the user to change the numbering.

Product Rules - - Process (Internal Consistency)
8 A process must have at least one input data flow and one output data flow. This rule cannot be

enforced in a restrictive fashion because doing so will not take into account unfinished work For
examp=le an unfinished diagram might contain a process with an output data flow but no input data
flow. Active guidance (Level 2) can be provided when saving the diagram or exiting the diagramming
tool. Passive guidance (Level 1 or Level 2) can be provided if the user does not wish to be distracted
with automatic internal consistency checks on work in progress.

9. A process must be connected to at least one of the following: data store, process, external
entity. This rule cannot be enforced in a restrictive fashion because doing so will not take into account
unfinisr~ed work. For example, immediately after a process is drawn it is freestanding. Active guidance
(Level 2) can be provided when the diagram is saved or the diagramming tool is exited. Passive
guidance (Level 1 or Level 2) can be provided if the user does not wish to be distracted with automatic
internal consistency checks on work in progress.

10. A process must be labeled. This rule can be restrictively (Level 1) enforced by a CASE tool by
automatically prompting the user to enter a label when the process is created and requiring the user to
enter a label at the prompt.

Product Rules - - External Entity (Internal Consistency)
11. An external entity must appear for the first time on the context diagram. This rule can be

restrictively (Level 1) enforced by a CASE tool by verifying the name of any external entity placed
below the context diagram with a list of names of those external entities appearing on the context
diagram. If the external entity is appearing for the first time in the diagram set (but not on the context
diagram) the CASE tool can disallow the placement of the external entity.

12. An external entity must be connected to a process. This rule has two possible scenarios, each of
which requires a different enforcement mechanism. In the first scenario the external entity is free
standirg and, therefore, in violation of the methodology rule. However, this may be attributed to work
in progress rather than an error. Active (Level 2) or passive (Level 1 or Level 2) guidance can be used
to detect a free standing external entity. In the second scenario, the user attempts to connect the
external entity to a data store or another external entity. A CASE tool may prohibit this type of
connection from being made (Level 1 Restriction).

The DATA BASE for Advances in Information S y s t e m s - Fall 1997 (Vol. 28, No. 4) 45

13. An external entity must be labeled. This rule can be restrictively (Level 1) enforced by a CASE tool
by automatically prompting the user to enter a label when the external entity is created and requiring
the user to enter a label at the prompt.

Product Rules - - Data Flow (Internal Consistency)
14. A data flow must be an interface between a process and either a second process, a data store,

or an external entity. This rule may be enforced in a restrictive (Level 1) manner by not allowing a
data flow to be drawn as a free standing object. Instead, a data flow should only be created by
indicating the two existing objects that the flow is connecting. If one of the objects is not a process the
CASE tool can prevent the data flow from being created.

15. A data flow into a data store must have a composition that is a subset of the data store's
composition. This rule cannot be enforced in a restrictive fashion because doing so will not take into
account unfinished work. For example, the user can choose not to explicitly define, via the data
dictionary, the composition of the data stores and/or data flows until after the diagram has been
drawn. In this case, active guidance (Level 2) or passive guidance (Level 1 or Level 2) can be used to
indicate any potential inconsistencies or the existence of an undefined data flow/store. Even if the
CASE tool required the user to immediately enter the data dictionary after creating a data store or a
data flow, the user must still be allowed to leave the composition definition unfinished.

16. A data flow must be labeled. This rule can be restrictively (Level 1) enforced by a CASE tool by
automatically prompting the user to enter a label when the data flow is created and requiring the user
to enter a label at the prompt.

Product Rules m Data Store (Internal Consistency)
17. A data store can only exist as an interface between two processes. This rule has two possible

scenarios, each of which requires a different enforcement mechanism. In the first scenariothe data
store is free standing or connected to only one process (and is not connected to the parent process)
and is, therefore, in violation of the methodology rule. However, this may be attributed to work in
progress rather than an error. Active (Level 2) or passive (Level 1 or Level 2) guidance can be used to
detect this situation. In the second scenario, the user attempts to connect a data store to anything but
a process. The CASE tool may prohibit this type of connection from being made (Level 1 Restriction).

18. A data store must be labeled. This rule can be restrictively (Level 1) enforced by a CASE tool by
automatically prompting the user to enter a label when the data store is created and requiring the user
to enter a label at the prompt.

Product Rules - - Data Flow Diagram (Hierarchical Consistency)
19. A parent process must exist unless it is a context diagram. This rule can be restrictively (Level 1)

enforced by a CASE tool by only allowing a new diagram to be created (except for the context
diagram) from a process decomposition resulting in a new (child) diagram level.

Product Rules - - Process (Hierarchical Consistency)
20. A process must decompose to either another data flow diagram or a primitive process

specification, This rule cannot be enforced in a restrictive fashion because doing so will not take into
account unfinished leveling. Level 1 Active Guidance can be provided by giving the user the option of
creating a primitive process specification after creating the process. Level 2 Active Guidance
regarding the completeness of the set of data flow diagrams can be provided when saving a diagram
or exiting the diagramming tool. Passive guidance (Level 1 or Level 2) can be provided if the user
does not wish to be distracted with automatic completeness checks on work in progress.

21. A process must be numbered with respect to its parent. This rule can be restrictively (Level 1)
enforced by a CASE tool by automatically numbering all processes when they are created and not
allowing the user to change the numbering.

46 The DATA BASE for Advances in Information S y s t e m s - Fall 1997 (Vol. 28, No. 4)

Product Rules - - Data Flow (Hierarchical Consistency)
22 An input (output) data flow to a parent process must appear as net input (output) on the child

data flow diagram decomposed from the process. This rule can be restrictively (Level 1) enforced
by a CASE tool by automatically carrying down all input and output data flows from a parent process
to a child diagram when moving between diagram levels and not allowing the net input and net output
data flows to be deleted from the child diagram.

23. A net input (output) data flow on a child data flow diagram must appear on the parent process
as input (output). This rule can be restrictively (Level 1) enforced by a CASE tool by not allowing
insertions of net input and net output data flows on a child diagram.

24. A set of input data flows on a child data flow diagram that were split from a data f low
connected to the parent process must match the parent data flow's composition. This rule
cannot be enforced in a restrictive fashion unless the parent data flow has been decomposed to a
record or element definition in the data dictionary (see rule 25). Level 1 Active Guidance can be
provided by giving the user the option to enter the definition in the data dictionary after splitting the
data flow. Level 2 Active Guidance regarding the completeness of the set of data flow diagrams can
be provided when saving a diagram or exiting the diagramming tool. Passive guidance (Level 1 or
Level 2) can be provided if the user does not wish to be distracted with automatic completeness
checks on work in progress.

25. A data flow must decompose to either a record definition or an element definition. This rule
cannot be enforced in a restrictive fashion because doing so will not take into account unfinished
work. Level 1 Active Guidance can be provided by giving the user the option to enter the definition in
the data dictionary after creating the data flow. Level 2 Active Guidance regarding the completeness
of the set of data flow diagrams can be provided when saving a diagram or exiting the diagramming
tool. Passive guidance (Level 1 or Level 2) can be provided if the user does not wish to be distracted
with automatic completeness checks on work in progress.

Product Rules m Data Store (Hierarchical Consistency)
26. A data store must decompose to either a file definition or a record definition. This rule cannot

be enforced in a restrictive fashion because doing so will not take into account unfinished work Level
1 Active Guidance can be provided by giving the user the option to enter the definition in the data
dictionary after creating the data store. Level 2 Active Guidance regarding the completeness of the set
of data flow diagrams can be provided when saving a diagram or exiting the diagramming tool.
Passive guidance (Level 1 or Level 2) can be provided if the user does not wish to be distracted with
automatic completeness checks on work in progress.

Product Rules - - Primitive Process Specifications (Hierarchical Consistency)
27. All inputs and outputs of a primitive process specification must match those of the

corresponding parent process on the data flow diagram. This rule can be restrictively (Level 1)
enforced by a CASE tool by automatically carrying down input and output data flows from the parent
process to the primitive process specification upon creation of the primitive process specification.
Further, the CASE tool should not allow any of the inputs or outputs to be deleted from the primitive
process specification nor may any inputs or outputs be added to the primitive process specification.

28. A primitive process specification must be labeled with the same identifier as the
corresponding primitive process on the data flow diagram. This rule can be restrictively (Level 1)
enforced by a CASE tool by automatically labeling the primitive process specification with the
corresponding process label and not allowing the user to change the label.

The DATA BASE for Advances in Information S y s t e m s - Fall 1997 (Vol. 28, No. 4) 47

