
COMJUTING PRACTlCES

Edgar H. Sibley
Panel Editor

Instead of limiting functionality, usability complements functionality. It
affects how and with what effectiveness a system is used, and even whether
or not it is used at all.

FUUCTIOUALITY AND USABILITY

NANCY C. GOODWIN

Too often designers of computer systems equate
functionality with usability or view usability fea-
tures as limiting functionality. Certainly, it is impor-
tant that a system provide the functions a user needs
to accomplish a task or set of tasks. However, it is a
mistake to suppose that design features intended to
enhance usability are niceties to be provided at the
designer’s convenience, and that if a trade-off is to
be made it should be made in favor of functionality.
There is increasing evidence that the effective func-
tionality of a system depends on its usability.

After some comments about system functionality
and usability, and why designers may avoid focusing
on usability, this article will cite and discuss evi-
dence from the literature demonstrating that func-
tionality and usability are complementary system
characteristics.

WHAT IS FUNCTIONALITY?
The need for functionality is obvious. Users will se-
lect systems that provide functions needed to do
their tasks. They will not select a reservations sys-
tem to manage banking tasks, or a spreadsheet to do
word processing.

The task of specifying requirements for system

01987 ACM OOOI-0782/87/0300-0229 750 There often exists a perception that the more

functionality seems straightforward. A designer ne-
gotiates with users or their representatives a list of
desired functions and then provides those functions.
By comparing the list of functions requested by the
users to the list of functions provided by the system,
the designer knows how well the system will meet
users’ needs.

However, people’s reasons for choosing to use a
computer system in the first place may differ. One
rationale for using a computer system is because it is
the only way to get a particular job done. There are
many high-volume, highly structured tasks that de-
pend on system use-reservations systems, insur-
ance form processing, catalog sales, banking, and
telephone directory services-where, once a system
has been introduced, it is hard to imagine returning
to the old manual methods.

Another motivation for computer use is to help
someone do a job better or faster. In these cases, the
tasks are generally less structured, and computer use
is more discretionary; whether or not a user consid-
ers a computer necessa y for these jobs depends on
how well the computer meets the user’s needs.
Many office applications, decision support systems,
and information retrieval systems fall in this
category.

March 1987 Volume 30 Number 3 Communications of the ACM 229

Computing Practices

functions are provided, and the more flexibility and
the more complexity in the system, the better. How-
ever, for both discretionary and nondiscretionary
users, the way in which the functions are imple-
mented will have a significant impact on system
usability.

In [22], Nickerson categorizes the complaints
that cause people to avoid using a particular com-
puter system: limited funct:ionality, accessibility-
availability problems, start--stop hassles, poor system
dynamics and response time, work-session inter-
rupts, inadequacies in training and user aids, docu-
mentation, command languages, consistency and in-
tegration, and users’ conceptualization of a system.
Note that functionality is only one of the factors
influencing user acceptance, most of which relate to
how the system c:an be used rather than whether or
not a particular function is available.

WHAT IS USABILITY?
Usability is less easily defined. It is affected by the
types of tasks to be accomplished: A keyboard-based
interface appropriate for a word-processing applica-
tion may be inadequate for a graphics application. In
this respect, usability, like functionality, is task re-
lated; it is also people related. The characteristics
that make a system usable :for one set of users may
render it unusable for another. First-time, casual,
and expert users may all have different require-
ments, and their requirements may change as they
move from one level of expertise to another.

For those interested in a definitive or complete
discussion of usahility, there is a wealth of research,
reports, and articles whose aim is to describe what
makes a system usable. In a fine survey of current
work, Paxton and Turner [23] focus on the novice
user, although many of the points they raise would
also apply to experts.

Although we are making progress in specifying
usability in measurable terms, it is still too often
discussed in abst.ract terms. A designer trying to find
out how to design a usable system may find in a
technical journal a statement like this:

To be truly usable a system must be compatible not only
with the characteristics of human perception and action,
but, and most critically, with users’ cognitive skills in
communication, understanding, memory, and problem
solving. [l]

Or, turning to a magazine, the designer might read,
“A friendly system has three important aspects. It is
cooperative, preventive, and conducive” [18]. Al-
though such abstract conceptualizations may be
quite valid, they do not offer specific guidance.

HOW CAN USABILITY BE ACHIEVED?
Some of the factors affecting usability are organiza-
tional and may be beyond the designer’s control.
Training, accessibility of terminals, and the culture
of the workplace all have an impact. The entire pop-
ulation of users must be accommodated, whether
they are first-time, casual, or expert users, or repre-
sent a combination of different levels of expertise.
Some computer system characteristics, such as slow
response times during periods of heavy usage, may
also be beyond the designer’s control.

Other factors affecting usability are more directly
within the designer’s purview. The designer can pro-
vide functions that match task requirements, and
determine the details of screen design, command
language or menu interaction techniques, system
feedback, and the dynamics of user-system
interaction.

There are increasing efforts under way to develop
techniques for including usability goals in the design
process. Carroll and Rosson [5] focus on developing
measurable usability specifications to be used with
an iterative design process, while Eason [8] discusses
variables affecting usability in the overall context
of system use: that is, looking beyond laboratory
experiments aimed at evaluating specific features
to an assessment of overall system impact on job
performance.

Advice on designing usable systems proliferates:
from brief articles in popular magazines [18, 21, 241,
to books [ll, 161, journal articles [6], [lQ], and re-
ports [26]. However, even guidance written explic-
itly for designers may need informed interpretation.
For example, of the 679 guidelines discussed in the
Smith and Mosier report [26], most are generally
stated and must be transformed into specific rules
for application to a particular system design [15, 201.

HOW USABILITY AFFECTS FUNCTIONALITY
Opinions on the importance of usability in system
design are not particularly new or unanimous.
Martin [16] has written that a user’s ability to use a
system powerfully will depend on the ease with
which he or she can communicate with it. Brooks
[3] considers usability “the proper criterion for suc-
cess,” and Bennett [2] argues that “user acceptance
is strongly affected by how the function is invoked as
well as what function the system contains.” Foley
and Van Dam [Q] conclude that usability is at least
as important as functionality.

On the other hand, Fried [lo] cautions us that “in
general, there is littIe hard evidence to support the
idea that ease of use leads to improved (traditional)
productivity, or that specific ease-of-use characteris-

230 Communications of the ACM March 1987 Volume 30 Number 3

Computing Practices

tics truly make software easier to use for a majority
of users.” In a sense, functionality itself can deter-
mine usability; if the functions provided do not
match task requirements, a system will not be
usable.

There is a growing body of evidence that shows
that providing extensive functionality is not enough:
People must understand what the functions do and
how to use them. In [3], Brooks describes the unpub-
lished work of W. B. Wright, who developed a sys-
tem to display and study proteins-a system that
required almost 100 commands to satisfy one of its
applications. However, by analyzing the commands,
it was possible to cluster them into small, meaning-
ful subsets that could be used to complete each con-
ceptual task. Those subsets were presented in menus
structured to minimize menu changes during task
completion.

Although Brooks cites this system as an example
of the conflict between power (many commands)
and ease of use (few commands), it is an excellent
example of how good interface design can enhance
functionality. None of the functions were removed
from the system, but they were made easier for
users to find and select. By grouping together on a
menu the commands needed for a task, the user is
not required to learn (and select from memory) a
large functionally disparate group of commands.
Instead, the user is able to select commands from
a small related set.

Unfortunately, a designer’s task is not always as
straightforward as grouping related commands into
menus. Meadows [IT] studied users of a database
search system from their first encounter through
mastery of the system, looking at three different
levels of prior computer experience and three differ-
ent levels of language complexity. Each language
provided the functions needed for users to complete
the search tasks: The simplest language was menu
based; the more complex language enabled users to
enter commands; and the most complex language
provided command entry and Boolean search
capabilities.

Meadows found that the least experienced group
using the least complex language, and the most ex-
perienced group using the most complex language,
performed the best. Moreover, users’ satisfaction
with a language changed according to their experi-
ence. As users of the simplest language became ex-
perienced, they became less satisfied with that lan-
guage; as users of the more complex language gained
experience, they became more satisfied. These re-
sults suggest that it was not the underlying function-
ality that affected user performance, but the way in
which users accessed those functions.

An earlier study by Walther and O’Neil [27] is
sometimes cited as showing that flexibility-availa-
bility of abbreviations, default values, command
synonyms, etc.-improves an expert user’s perfor-
mance, but hinders the novice. As published, the
study does not present the actual data and does not
seem to support so strong a conclusion. The confu-
sion may be due to different definitions of the term
novice user. Whereas a novice is often considered to
be a person with little computer experience (i.e., a
person who is not an expert), Walther and O’Neil
use the term to refer to a first-time user who has
never touched a computer before. The problem is
that, after the first session, such users are no longer
novices. According to Walther and O’Neil,

interface flexibility is not uniformly effective with all
users in optimizing performance. In a single encounter
with the on-line system, users are more prone to make
syntax errors if offered short-cut flexibility options. Nev-
ertheless, most all users of the flexible version worked
significantly faster than those not having the options.
The exceptions were novices who worked more rapidly
without the options than with them. . . . In general, users
having access to flexibility options made many times
more syntax errors.

Thus, regardless of user experience, flexibility leads
to errors. But, once users gain just a very little expe-
rience, flexibility in a language starts to become
helpful.

These studies show that there is no simple answer
to user interface design. Not only do different users
have different requirements, but the requirements
change over time. Novice users do better with a sim-
ple language, whereas experts benefit from complex-
ity, but the benefits of complexity have to be bal-
anced against the cost of making errors.

Unfortunately, some designers assume that usabil-
ity is only an issue for systems designed for novices.
According to Shneiderman [25], even expert users
are penalized by poor design: “Even expert users of
interactive editing or command languages were
found spending one-third of all commands in mak-
ing or correcting errors.” Although it may not always
be possible to translate the costs of these errors on a
per-error basis, it is obvious that the time required
for error correction imposes costs in both staff and
computer time.

For high-volume, structured tasks, improved usa-
bility can have significant, measurable effects. For
computer systems used for large-scale transactions,
seemingly small improvements in usability can
translate into large cost savings: Saving as little as
I second per transaction can mean a savings of thou-
sands of dollars as well as significantly improved
productivity.

March 1987 Volume 30 Number 3 Communications of the ACM 231

Computing Practices

In [13], Keister and Gallaway describe the scope of
the productivity improvements possible through im-
proved design. They descri.be how a user interface to
a data-entry application was redesigned to accom-
modate changes in screen :format and content, elimi-
nation of unnecessary abbreviations, increased con-
sistency in wording and operational procedures,
changes in error correction and feedback, and added
use of on-line help. As a result, task completion
times and error rates were both reduced by 25 per-
cent, a combined savings that could reduce the
workload by 17 weeks per employee per year.

While monitoring the use of a statistical package
by 11 graduate students wi.th varying degrees of ex-
perience with the package, Davis [7] found that mis-
leading command names for the more than 100 com-
mands (of which only 34 were used) and poor sys-
tem feedback contributed to a lack of understanding
of the system. Although some of the errors commit-
ted were trivial, Davis reports that a poorly chosen
command name could cause serious errors: “The
command SAVE FILE was widely misinterpreted,
causing often disastrous and mysterious space allo-
cation problems for the novice.” Other errors caused
system crashes. IMoreover, because of poorly worded
feedback messages, the students often reran jobs that
had already been successfully completed. This is a
case where poor interface design in a system provid-
ing a great deal of functionality contributed to the
misuse of that functionality.

Poor interface design can have more serious con-
sequences than .misuse and errors. In [4], Conrath
describes a military logistics system that ceased to be
used six months after implementation because it re-
quired extensive training, had a high error rate for
data input, and produced unusable output. Accord-
ing to Conrath, “While the software did everything
asked of it, the formats of both input and output
were virtually incomprehensible to anyone without
a computer programming background.” Conse-
quently, users stopped using it and reverted to the
telephone to get information: Any potential benefits
that might have derived from the system were lost,
and its functionality became irrelevant because it
was unusable.

In studying the use of a banking system in which
users query a database by entering a customer’s ac-
count number and a code for a type of data report,
Eason found that users would pick familiar codes to
accomplish certain tasks even though these codes
were unsuitable and more appropriate and efficient
codes existed [8]. Instead of exploring system capa-
bilities, users learned the minimum amount needed
to accomplish their primary tasks: At best, they ob-
tained more dat.a than they needed; at worst, they

obtained the wrong data or failed to find the infor-
mation they needed. When the user interface was
redesigned to present the codes in a more logical and
accessible format, the number of codes used in-
creased. The functionality improved not because
more functions were added, but simply because they
were presented in a more accessible fashion.

In a comparison of two message-handling systems,
Goodwin [12] finds a similar interaction between
usability and functionality. One set of message-
handling capabilities was provided in a functionally
rich but difficult to use system, and another in a
limited but easier to use system. Although system
programmers claimed that the richer system was
better, preliminary data on system use indicated
that, while many message-handling functions were
used in the simpler system, fewer were used in the
more complex system. In effect, the richer but
harder system provided less effective functionality. If
only the use of the harder system had been ob-
served, one might have concluded that many of the
secondary functions were not needed. However, the
use these functions received in the simpler system
showed that they were in fact valuable.

Poor usability may have more subtle effects. Long,
Hammond, Barnard, and Morton [14] point out that
poor usability may jeopardize the utility of a system
if it causes some users to give up on it. When a
computer system is used in parallel with manual
procedures (i.e., during an introductory period) and
the system is difficult to use, the currency of data in
the system may be at risk. By opting to continue
using the manual procedures rather than learning
the new system, recalcitrant potential users may
cause the data in the system to become out-of-date:
And functionality is worthless when processing
worthless data.

USABILITY DOES MATTER
Designing a usable system requires understanding
the intended users, their levels of expertise, the
amount of time they expect to use the system,
and how their needs will change as they gain
experience.

Although usability is not an easy concept, invest-
ing in usability is as important as investing in func-
tionality. Failure to consider usability can lead to
system failure. At best, a system with poor usability
will cost its users time and effort; at worst, it will not
be used at all, and its functions may be removed
because their utility has not been demonstrated.

Usability is not just an advertiser’s buzzword de-
scribing features that a designer might add or not, at
his or her convenience. As an integral part of system
design, usability contributes to overall system func-

232 Communications of the ACM March 1987 Volume 30 Number 3

Computing Practices

tionality by making it accessible to users and facili-
tating effective use of functional capabilities.

REFERENCES
1. Barnard, P.J., Hammond, N.V., Morton, J., and Long, J.B. Consistency

and compatibility in human-computer dialogue. Int. J. Man-Mach.
Stud. 15, 1 (July 1981). 87-134.

2. Bennett, J.L. Incorporating usability into system design: The oppor-
tunity for interactive computer graphics. In Proceedings of the Infer-
national Conference on Cybernetics and Society (Tokyo-Kyoto. Japan,
Nov. 3-7). Institute of Electrical and Electronics Engineers, New
York, 1978. pp. 1119-1124.

3. Brooks, F.P.. Jr. The computer scientist as “toolsmith”-Studies in
interactive graphics. In Information Processing 1977, B. Gilcrist, Ed.
Elsevier North-Holland, New York, 1977, pp. 625-634.

4. Conrath, D.W. Considerations for the design of office communica-
tion-information systems. In Proceedings, Office Automation Con-
ference (San Francisco, Calif.. Apr. 5-7). American Federation
of Information Processing Societies, San Francisco, Calif., 1982,
pp. 825-835.

5. Carroll, J.M., and Rosson, M.B. Usability specifications as a tool in
iterative development. RC 10437 (#44642) 4/3/84, IBM, Yorktown
Heights, N.Y., 1984.

6. Coulouris, G.F. Designing interactive systems for the office of the
future. Behav. Inf Technot. I, 1 (Jan.-Mar. 1982), 37-42.

7. Davis, R. User error or computer error? Observations on a statistics
package. Int. I. Man-Mach. Stud. 19, 4 (Oct. 1983). 359-376.

8. Eason, K.D. Towards the experimental study of usability. Ink J.
Man-Mach. Stud. 3, 2 (Apr.-June 1984) 133-143.

9. Foley, J.D., and Van Dam, A. Fundamentals ofInteractive Computer
Graphics. Addison-Wesley, Reading, Mass., 1982.

10. Fried, L. Nine principles for ergonomic software. Dafamafion 28. 11
(Nov. 1982), 163-166.

11. Galitz, W.O. Handbook of Screen Format Design. Q.E.D. Information
Sciences, Wellesley, Mass., 1981.

12. Goodwin, N.C. Effect of interface design on usability of message
handling systems. In Proceedings of the Human Factors Society 26th
Annual Meeting (Seattle, Wash., Oct. 25-29). Human Factors Society,
Santa Monica, Calif., 1982. pp. 69-73.

13. Keister, R.S., and Gallaway, G.R. Making software user friendly: An
assessment of data entry performance. In Proceedings of the Human
Fucfors Society (Norfolk, Va., Oct. 10-14). Human Factors Society,
Santa Monica, Calif., 1983, pp. 1031-1034.

14. Long, J., Hammond, N., Barnard, P., and Morton, J. Introducing the
interactive computer at work: The users’ views. Behav. In/, Technot.
2, 1 (Jan.-Mar. 1983) 39-106.

15. Maguire. M. An evaluation of published recommendations on the
design of man-computer dialogues. Int. 1. Man-Mach. Stud. 16, 3
(Mar. 1982) 237-261.

16. Martin, J. Design of Man-Compufer Dialogues. Prentice-Hall, Engle-
wood Cliffs, N.J., 1973.

17. Meadow, C.T. User adaptation in interactive information retrieval.
J. Am. Sot. If. Sci. 34,4 (July 1983) 289-291.

18. Meads, J.A. Friendly or frivolous? Dafamnfion 31, 4 (1985), 96-100.
19. Morland, D.V. Human factors guidelines for terminal interface de-

sign. Commun. ACM 26, 7 (July 1983) 484-494.
20. Mosier, J.N., and Smith, S.L. Application of guidelines for designing

user interface software. Behav. If. Technot. 5, 1 (Jan.-Mar. 1986)
39-46.

21. Moynihan, J.A. What users want. Dnfamafion 284 (Apr. 1982),
116-118.

22. Nickerson, R. Why interactive computer systems are sometimes not
used by the people who might benefit from them. Int. J. Man-Mach.
Stud. 25, 4 (Nov. 19!1), 469-483.

23. Paxton, A.L., and Turner, E.J. The application of human factors to
the need of the novice user. Int. J. Man-Mach. Stud. 20, 2 (Feb. 1984)
137-156.

24. Shneiderman, B. How to design with the user in mind. Dntamation
28,4 (Apr. 1982) 125-126.

25. Shneiderman, B. The future of interactive systems and the emer-
gence of direct manipulation. Behav. Inf Technot. I, 3 (July-Sept.
1982), 237-256.

26. Smith, S.L., and Mosier, J.N. Design guidelines for user-system in-
terface software. ESD-TR-84-190, MITRE Corp., Bedford, Mass., 1984.

27. Waltber, G.H.. and O’Neil, H.F, Jr. On-line user-computer inter-
face-The effects of interface flexibility, terminal type, and experi-
ence on performance. In AFIPS Conference Proceedings, vol. 43. (Chi-
cago, Ill., May 6-10) AFIPS Press, Reston, Va., 1974, pp. 379-384.

CR Categories and Subject Descriptors: H.1.2 [Models and Princi-
ples]: User/Machine Systems-human factors

General Terms: Design, Human Factors, Performance
Additional Key Words and Phrases: Functionality, Usability

Received 11/85; revised 8/86; accepted 11/86

Author’s Present Address: Nancy C. Goodwin, The MITRE Corporation,
Burlington Road, Bedford, MA 01730.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

ACM Algorithms
Collected Algorithms from ACM (CALGO) now includes
quarterly issues of complete algorithm listings on microfiche
as part of the regular CALGO supplement service.

The ACM Algorithms Distribution Service now offers micro-
fiche containing complete listings of ACM algorithms, and
also offers compilations of algorithms on tape as a substitute
for tapes containing single algorithms. The fiche and tape
compilations are available by quarter and by year. Tape
compilations covering five years will also be available.

To subscribe to CALGO, request an order form and a free
ACM Publications Catalog from the ACM Subscription De-
partment, Association for Computing Machinery, 11 West
42nd Street, New York, NY 10036. To order from the
ACM Algorithms Distributions Service, call 713-782-6060
or refer to the order form that appears in every issue of
ACM Transactions on Mathematical Software.

March 1987 Volume 30 Number 3 Communications of the ACM 233

