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Learning Outcomes

In this chapter, you’ll learn...
- what happens when two waves combine, or interfere, in space.

* how to understand the interference pattern formed by the
Interference of two coherent light waves.

* how to calculate the intensity at various points in an interference
pattern.

* how interference occurs when light reflects from the two
surfaces of a thin film.

* how Iinterference makes it possible to measure extremely small
distances.
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Introduction

* Why do soap bubbles
show vibrant color
patterns, even though
soapy water Is
colorless?

 What causes the
multicolored reflections
from DVDs?

- We will now look at optical effects, such as
Interference, that depend on the wave nature of light.
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Principle of Superposition

* The term interference refers to any situation in which
two or more waves overlap in space.

* When this occurs, the total wave at any point at any
Instant of time Is governed by the principle of
superposition:

When two or more waves overlap, the resultant
displacement at any point and at any instant is
found by adding the instantaneous displacements
that would be produced at the point by the
Individual waves if each were present alone.

@ Pearson

Copyright © 2020 Pearson Education, Inc. All Rights Reserved



Wave Fronts From a Disturbance

* Interference effects are most e ey (fredueney )
easily seen when we combine
sinusoidal waves with a single \ T /

frequency and wavelength.

Sh isa” hot” of e Wil

» Shown is a “snapshot” of a /)

single source S, of sinusoidal / l \ /
waves and some of the wave JAL
fI’OntS prOdUCed by thlS The wave frosnts move outward from
source. source S; at the wave speed v = fA.
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In optics, sinusoidal waves are characteristic of monochromatic light (light of a single
color). While it’s fairly easy to make water waves or sound waves of a single frequency,
common sources of light do not emit monochromatic (single-frequency) light. For exam-
ple, incandescent light bulbs and flames emit a continuous distribution of wavelengths. By
far the most nearly monochromatic light source is the laser. An example is the helium—
neon laser, which emits red light at 632.8 nm with a wavelength range of the order of
+0.000001 nm, or about one part in 10°. In this chapter and the next, we’ll assume that
we are working with monochromatic waves (unless we explicitly state otherwise).



Constructive and Destructive
Interference
 Shown are two identical

sources of monochromatic
waves, S; and S.,. s

 The two sources are
permanently in phase; they
vibrate in unison.

 Constructive interference
occurs at point a (equidistant
from the two sources).
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Figure 35.2 (a) A “snapshot™ of sinusoidal waves spreading out from two coherent sources
81 and §;. Constructive interference occurs at point a (equidistant from the two sources) and
(b) at point b. (c) Destructive interference occurs at point c.

{a) Two coherent wave sowces separated
by a distance 44

{b) Conditions for consumetive interference:
Waves interfere constructively if their path
lengths differ by an integer number of
wavelengths: r, — r; = mA. |

)Y

(c) Conditions for destmctive interference:
Waves interfere destmictively if their path
lengths differ by a half-integer number of
wavelengths: r, — r; = (m + %))L.

8 3
ry — 1, = —2.50A

2
Y
+




(constructive
I, — I = mA (m=0,=%1, =2, £3,...) interference, (35.1)
sources in phase)

ry—1 = (m +%)A (m=0, -1, £2, +3,...)

Antinodal curves (red) mark positions where

the waves from §, and §, imterfere

mnsmlcuve;ljf_: At a and b, the waves
arrive in phase and
interfere constructively.

At ¢, the waves ﬂr}ive
one-half cycle out of phase
and interfere destructively.

m = the number of wavelengths A by which
the path lengths from 5§, and 5, differ.

(destructive
interference, (35.2)
sources in phase)



Conditions for Constructive
Interference @ ofg

 The distance from SZ to (b) Conditions for constructive interference:
p Oint b | S exaCtly two Waves interfere constructively if their path

lengths differ by an integer number of

wavelengths greater than wavelengths: r, — r{ = mA.
the distance from S, to b. )\

 The two waves arrive in

phase, and they reinforce o= 2A
each other.
* This is called constructive s, IQAU'

Interference.
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Conditions for Constructive
Interference ¢ofg

* The distance from S; to

(c) Conditions for destructive interference:

oint ¢ Is a half-inteqgral Waves interfere destructively if their path
P g y p

lengths differ by a half-integer number of
number Of WaV9|engthS wavelengths: r, — ry = (m + %))\.
greater than the distance s, :

~

from S, to c. ) — r = —2.500

* The two waves cancel or
partly cancel each other. S

 This is called destructive
Interference.
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Conditions for Constructive
Interference org

¢ S hOW” are tWO Id e ntl Cal Sou rceS Antinodal curves (red) mark positions where
. the waves from S, and §, interfere
of monochromatic waves, S, and constructively.

arrive in phase and

SZ, WhICh are In phase. inlgrt'crc chslrucli\'cly.

» The red curves show all positions
where constructive interference
occurs; these curves are called
antinodal curves.

* Not shown are the nodal curves, m=8 s g

one-half cycle out of phase

which are the curves that show and intrfere destructively
where destructive interference
OCCUrs.
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CAUTION Interference patterns are not standing waves In the standing waves described in
Sections 15.7, 16.4, and 32.5, the interference is between two waves propagating in opposite directions;
there is no net energy flow in either direction (the energy in the wave is left “standing”). In the situations
shown in Figs. 35.2a and 35.3, there is likewise a stationary pattern of antinodal and nodal curves, but
there is a net flow of energy outward from the two sources. All that interference does is to “channel” the
energy flow so that it is greatest along the antinodal curves and least along the nodal curves.



Conditions for Constructive
Interference @org

* The concepts of
constructive
Interference and
destructive interference
apply to these water
waves as well as to
light waves and sound
waves.
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Figure 35.5 (a) Young's experiment to show interference of light passing through two slits.

A pattern of bright and dark areas appears on the screen (see Fig. 35.6). (b) Geometrical analysis
of Young’s experiment. For the case shown, r» > r and both y and # are positive. If point P is on
the other side of the screen’s center, r» <~ rj and both y and ¢ are negative. (c) Approximate geom-
etry when the distance R to the screen is much greater than the distance d between the slits.

(a) Interference of light waves passing through two slits

Cylindrical  fronts from two slits Sereen

wave fronts --\\

Bright bands where
wave fronts arive in
w:: phase and interfere
constrctvely
" Dark bands where
< wave fronts arrive out
of phase and interfere
destructvely
(b) Acmal geometry (seen from the side) (c) Approximate geometry
52 ||_asine Sereen S2||_dsine
[ H rz
d d
(2]
i T L
) T )IL 1
P
K R \\
In real sjtu,ﬂ]:ié)ns, the distance R to the ... 50 We can treat the rays as
sereen is usually very much greater than parallel, in which case the path

the distance d between the slits ... difference is simply r, — r; = dsin#.



Two-Source Interference of Light @or2

- Shown below Is one of the earliest quantitative
experiments to reveal the interference of light from
two sources, first performed by Thomas Young.

* The interference of waves from slits S; and S,
produces a pattern on the screen.

(a) Interference of light waves passing through two slits

Coherent wave v

Cylindrical fronts from two slits _wreen
wave fronts ~——_
Monochromatic |~ —

Bright bands where
light

wave [ronts arrive in
“+-::phase and interfere

constructively

"~ Dark bands where
o +" wave fronts arrive out

Vi
/.

of phase and interfere

a— | destructively
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Two-Source Interference of Light zor2

* (b) shows the actual geometry of Young’'s experiment.

- If the distance R to the screen is much greater than
the distance d between the slits, we can use the

approximate geometry shown in (c).

(b) Actual geometry (seen from the side) (c) Approximate geometry

Sz L dsinf Screen SZ J dsin@

7F§'\6 j:\”z

d
)|£ - 0 Iy T i | K
Sy 7 ¥ Si[] E

P

v R : \
In real situati(.)ns, the distance R to the ... SO we can t‘rea[ the rays as
screen is usually very much greater than parallel, in which case the path
the distance d between the slits ... difference is simply r, — r, = dsin#.
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Interference From Two Slits

 Constructive interference (reinforcement) occurs at points where the
path difference is an integral number of wavelengths, mA.

* So the bright regions on the screen occur at angles 6 for which

Constructive Distance between slits ~ Wavelength
interference, 5
two slits:

o

dsing = mA* (m =0, £1,+2,...)
Angle of l'i.hc from slits to mth bright region on screen
- Similarly, destructive interference (cancellation) occurs, forming dark

regions on the screen, at points for which the path difference is a half-
iIntegral number of wavelengths.

Destructive Distance between slits Wavelength
interference, o
dsing = (m +3)A“" (m =0, +1,£2,...)

two slits:
Angle of line from slits to mth dark region on screen

.
C“
.

Video Tutor Solution: Example 35.1
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https://mediaplayer.pearsoncmg.com/assets/_video.true/secs-yf-vts-ex35-1

Figure 35.6 Photograph of interference
fringes produced on a screen in Young’s
double-slit experiment. The center of the
pattern is a bright band corresponding
tom = 0in Eq. (35.4); this point on the
screen is equidistant from the two slits.

m m+ 1/2
(constructive (destructive
interference, interference,

bright regions) dark regions)

< 11/2

S—>
<-9/2
4—>
<7/2
3—>
<5/2 CAUTION Equation (35.6) is for small
2 => angles only While Egs. (35.4) and (35.5)
<-3/2 are valid for any angle, Eq. (35.6) is valid
1> for small angles only. It can be used only if
<1/2 the distance R from slits to screen is much
0—= greater than the slit separation d and if R
<12 is much greater than the distance 3, from
=g the center of the interference pattern to the
<-3/2 mth bright band.

2>

3>

4>

5>



Vm = Rtan@y,

In such experiments, the distances y,, are often much smaller than the distance R from the
slits to the screen. Hence 8, is very small, tanfl,, = sin#,,, and

Vm = Rsinfy,

Combining this with Eq. (35.4), we find that for small angles only,

Constructive Positon of mth bright band ~ Wavelength

interference, P

Young’s experiment Yy =R— (m=0,+1,+2 ...) (35.6)
(small angles only): i d"'---....

Distance from slits to sereen  Distance berween slits

We can measure R and d, as well as the positions y,, of the bright fringes, so this experi-
ment provides a direct measurement of the wavelength A. Young's experiment was in fact
the first direct measurement of wavelengths of light.



EXAMPLE 35.1 Two-slit interference

Figure 35.7 shows a two-slit interference experiment in which the slits
are 0.200 mm apart and the screen is 1.00 m from the slits. The m = 3
bright fringe in the figure is 9.49 mm from the central bright fringe.
Find the wavelength of the light.

Figure 35.7 Using a two-slit interference experiment to measure the
wavelength of light.

Slits
N\

——rd = U.E(I}mri—




IDENTIFY and SET UP Our target variable in this two-slit interference
problem is the wavelength A. We are given the slit separation
d = 0.200 mm, the distance from slits to screen K = 1.00 m, and the
distance y3 = 9.49 mm on the screen from the center of the interference
pattern to the m = 3 bright fringe. We may use Eq. (35.6) to find A,
since the value of R is so much greater than the value of d or y3.

EXECUTE We solve Eq. (35.6) for A for the case m = 3:

L dnd _ (949 X 10~ m)(0.200 x 107> m)
 mR (3)(1.00 m)
=633 X 107 m = 633 nm

EVALUATE This bright fringe could also correspond to m = —3. Can
you show that this gives the same result for A7



EXAMPLE 35.2 Broadcast pattern of a radio station

It is often desirable to radiate most of the energy from a radio transmitter
in particular directions rather than uniformly in all directions. Pairs or
rows of antennas are often used to produce the desired radiation pattern.
As an example, consider two identical vertical antennas 400 m apart,
operating at 1500 kHz = 1.5 10° Hz (near the top end of the AM
broadcast band) and oscillating in phase. At distances much greater than
400 m, in what directions is the intensity from the two antennas greatest?

IDENTIFY and SET UP The antennas, shown in Fig. 35.8, correspond to
sources Sy and 5; in Fig. 35.5. Hence we can apply the ideas of two-slit
interference to this problem. Since the resultant wave is detected at dis-
tances much greater than ¢ = 400 m, we may use Eq. (35.4) to give the
directions of the intensity maxima, the values of # for which the path
difference is zero or a whole number of wavelengths.

Figure 35.8 Two radio antennas broadcasting in phase. The purple
arrows indicate the directions of maximum intensity. The waves that
are emitted toward the lower half of the figure are not shown.

m=20
m=-1 g =0 m=-+1
g = —30° # = +30°
30° 30°
m=-2 | m=+2
8 = —90° :‘,}c—g N 8 = +90°
5 Sy



EXECUTE The wavelength is A = ¢/f = 200 m. From Eq. (35.4) with
m =0, =1,and T2, the intensity maxima are given by

. mA m[ZD{} I'll:J m
sinfl = —=————=—

-0, * -
7 100m 2 8 =0, £30°, £90°

In this example, values of m greater than 2 or less than —2 give values
of sin# greater than 1 or less than —1, which is impossible. There is no
direction for which the path difference is three or more wavelengths, so
values of m of *3 or beyond have no meaning in this example.

EVALUATE We can check our result by calculating the angles for mini-
mum intensity, using Eq. (35.5). There should be one intensity mini-
mum between each pair of intensity maxima, just as in Fig. 35.6. From
Eq. (35.5), withm = —2, — 1,0, and 1,

{m+,_1,})|._m+
d 2

1
2

sinf = # = £14.5°% £48.6°

These angles fall between the angles for intensity maxima, as they
should. The angles are not small, so the angles for the minima are not
exactly halfway between the angles for the maxima.



Phasor Diagram for Superposition

 To add the two sinusoidal functions Al phasors rotate counterclockwise
with a phase difference, we can use =~ M"eede
the same phasor representation that i ety E\
we used for simple harmonic motion o A
(Chapter 14) and for voltages and
currents in ac circuits (Chapter 31).

b
coS—
),

' = 2K
B =2

 Each sinusoidal function is

represented by a rotating vector . - _
(phasor) whose projection on the ol IQ el

horizontal axis at any instant
represents the instantaneous value
of the sinusoidal function.
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Electric Field in Interference Patterns

 To find the intensity at any point in a two-source interference
pattern, we have to combine the two sinusoidally varying fields
(from the two sources) at a point P.

- If the two sources are in phase, then the waves that arrive at P
differ in phase by an amount ¢ that is proportional to the

difference in their path lengths,

* |f we further assume the amplitudes of the two waves are both
approximately equal to E at point P, the combined amplitude is:

Electric-field

amplitude in %
. - ‘Ex = 2F

two-source interference P

uew
..............
ay,
.
>
-
.
]
-
-
-
B

Phase difference
between waves
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l‘,.--F,lec‘[ric field

Poynting vector -, - 1 5 5 -
in vacuum S = — E X B “Magnetic field

Intensity of a sinusoidal electromagnetic wave in vacuum

i Electric-field amplitude  Magnetic-field amplitude . Electric constant
4 " A
"I =8 = Emameax _ Emax _ il ERE 2 le cE 2
- Pav T - — 2 max ~ 2%0%~max
A 210 210C, Mo

Magnitude of average ~ Magnetic

, "Speed of light in vacuum
Poynting vector constant



E'.F'2 1 €0 Y 1 2
I1=35,, = =5.,—Ep~= 5epcE (35.8)
av 2;.!{.(? 2 Lo P TotEp

The essential content of these expressions is that / is proportional to E . When we substi-
tute Eq. (35.7) into the last expression in Eq. (35.8), we get

I = %EDCEf: ZEDCEECOSE% (35.9)

In particular, the maximum intensity I,, which occurs at points where the phase difference
is zero (b = 0),1s

Iy = 2€qcE?

Maximum intensity
Intensity ip """ .y ¥ 2 ¢~~~ Phase difference
two-source interference I = Iycos E between waves (35.10)



Phase Difference and Path Difference

Path difference  Wave number = 27/A
Phase difference i~y , _ <7 _ _ e
two-source interference 4 ~A (fz {1) k(rz rl]

(35.11)



Intensity in Interference Patterns

The intensity at any point in a two-source interference pattern is:

Maximum intensity
% dermran,

. ¥ Phase difference
I = Iycos 5 between waves

-

......
-

=

Intensity in
two-source interference

Here |, Is the maximum intensity, which is four times as great as
the intensity from each individual source.

The phase difference is:

Path difference =~ Wave number = 27/A

Phase difference in o :
) : =-——(Fy —Fr) =kir, — 7
two-source interference ¢ A (Az 41) ( 2 ])
Distance from Distance from
Wavelength
source 2 source |

Video Tutor Solution: Example 35.3
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https://mediaplayer.pearsoncmg.com/assets/_video.true/secs-yf-vts-ex35-3

Figure 35.10 Intensity distribution in the interference pattern from two identical slits.

Intensity maxima ocewr where Intensity minima oceur where
¢ 15 an even multiple of 7 and ¢ 15 an odd mmlriple of 7 and
dsin# is an integer muluple of A. dsin# is an odd multiple of A/2.

.- ¥ = distance of a point in the pattern
" from the center (y = 0)

| | | | : | | ;
—3AR/d —2AR/d —AR/d 0 AR/d 2AR/d 3AR/d ! o= (b = phase difference between the two
! | ! ! ! ! | & e’ waves af each point in the parem
—Or —dar —2 0 2 A O
| | | | | | l . ¥ “dsinf = path difference from the two
dsinf
—3A —2A —A 0 A 24 3 slits at each point in the pattern



EXAMPLE 35.3 A directional transmitting antenna array

Suppose the two identical radio antennas of Fig. 35.8 are moved
to be only 10.0 m apart and the broadcast frequency is increased to
= 60.0 MHz. At a distance of 700 m from the point midway between
the antennas and in the direction # = 0 (see Fig. 35.8), the intensity is
Iy = 0.020 mez. At this same distance, find (a) the intensity in the
direction # = 4.0% (b) the direction near 8 = 0 for which the intensity
is Iy/2; and (c) the directions in which the intensity is zero.

IDENTIFY and SET UP This problem involves the intensity distribution
as a function of angle. Because the 700 m distance from the antennas
to the point at which the intensity is measured is much greater than
the distance d = 10.0 m between the antennas, the amplitudes of the
waves from the two antennas are very nearly equal. Hence we can use
Eq. (35.14) to relate intensity I and angle 6.



IDENTIFY and SET UP This problem involves the intensity distribution
as a function of angle. Because the 700 m distance from the antennas
to the point at which the intensity is measured is much greater than
the distance d = 10.0 m between the antennas, the amplitudes of the
waves from the two antennas are very nearly equal. Hence we can use
Eq. (35.14) to relate intensity [ and angle 6.

EXECUTE The wavelength is A = ¢/f=500m. The spacing
d = 10.0 m between the antennas is just twice the wavelength (as was
the case in Example 35.2), so d/A = 2.00 and Eq. (35.14) becomes

d
I= Igcnsz(%sinﬂ) = Iycos’[(2.004 rad)sin 6]

{a) When# = 4.0°,
I = Iycos [ (2.007 rad)sin4.0°] = 0.821,
= (0.82)(0.020 W/m?) = 0.016 W/m?

(b) The intensity I equals Ip/2 when the cosine in Eq. (35.14) has
the value * 1/V/2. The smallest angles at which this occurs correspond
to 2.00wsinf = fa/4rad, so sinf = =(1/8.00) = +0.125 and
6= 72"

(c) The intensity is zero when cos[(2.004 rad)sin#] = 0. This
occurs for 2.00wsinf = /2, £37/2, =57/2,..., or sinf=
+0.250, £0.750, £1.25, . ... Values of sin# greater than 1 have no
meaning, so the answers are

8 = +145° T486°

EVALUATE The condition in part (b) that = [y/2, so that
(2.004r rad)sinf = * ar/4 rad, is also satisfied when sinf = £0.375,
T0.625, or £0.875 so that# = =22.0°, £38.7° or £61.0° (Can you
verify this?) It would be incorrect to include these angles in the solution,
however, because the problem asked for the angle near 8 = 0 at which
I = Iy/2. These additional values of # aren’t the ones we're looking for.



Interference in Thin FIIMS @of2)

Light reflected from the upper and lower
surfaces of the film comes together in the eye at
P and undergoes interference.

Some colors interfere constructively and others
destructively, creating
the color bands we see.
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Phase Shifts During Reflection

Electromagnetic
waves propagating
in optical
materials

Mechanical waves
propagating on
ropes

If the transmitted wave moves
faster than the incident wave ...

Material a (slow)
n

a

Incident

r

Reflected

Material b (fast)

> n

Transmitted

... the reflected wave undergoes no

phase change. .,

>
BEFORE ~_i
Incident ;
AFTER < >
Reflected Transmitted

Electromagnetic
waves propagating
in optical
materials

Mechanical waves
propagating on
ropes

If the transmitted wave moves

stower than the inc

Material a (fast)

Incident

ident wave ...

Material b (slow)

n, < n,

%

Reflected

... the reflected wave undergoes a
half-cycle phase shift.

>
Incident
5 >
‘ I: P
Reflected Transmitted
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Interference in Thin FIIMS @of2)

 For light of normal incidence on a thin film with wavelength A in
the film, in which neither or both of the reflected waves have a

half-cycle phase shift:

Constructive reflection: 2t = mA (m =0 1.2, . )
2 r,

(From t!““ film, ) Thickness of film Wavelength
no relative phase shift) r*
»

Destructive reflection: 21“.: (m iy %))\ (m =) 1.2, ... )
* When only one of the reflected waves has a half-cycle phase shift:

1 1 . = l =
Constructive reflection: 22 (m I 2))\ (m O L2 ... )

x

(From thin Glm, " Thickness of film ..Wavelength
half-cycle phase shift) s
D ¥
Destructive reflection: 2t = mA (m =0, 1:2. ... )

* Video Tutor Solution: Example 35.5
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https://mediaplayer.pearsoncmg.com/assets/_video.true/secs-yf-vts-ex35-5

E = —nEi (normal incidence) (35.16)
ng + Np
This result shows that the incident and reflected amplitudes have the same sign when n,
is larger than n;, and opposite signs when ny, is larger than n,. Because amplitudes must
always be positive or zero, a negative value means that the wave actually undergoes a half-
cycle (180°) phase shift. Figure 35.13 shows three possibilities:

Figure 35.13 Upper figures: electromagnetic waves striking an interface between optical materials
at normal incidence (shown as a small angle for clarity). Lower figures: mechanical wave pulses on ropes.

(a) If the wansmited wave moves (b) If the incident and transmited (c) If the transmitted wave moves
faster than the incident wave ... waves have the same speed ... slower than the incident wave ...
Electromagnetic Material a (slow) | Materiel b (fast) Maerala My = "y Material b Material a (fast) ‘ Material b (slow)

waves propagating
in optical
materials

n, > ny (same as a)

Reflected

... the reflected wave undergoes a

... the reflected wave undergoes no .o )
... there is no reflection.
1

phase change. ., half-cycle phase shift.
Mechanical waves > > i >
propagating on BEFORE N —_— ]
ropes Incident ; Incident | Incident
ATER_* S > Ll S S I S
Reflected * | *  Transmired Transmitted Reflected | Transmitted

Waves travel slower on heavy ropes than on light ropes.



Figure 35.14 (a) Light reflecting from a
thin film produces a steady interference
pattern, but (b) light reflecting from a
thick film does not.

(&) Light reflecting from a thin film

‘._ Bursts of light a Zﬁ‘
few pm long
2 The waves reflected

-+ from the two surfaces
. are part of the same

lie::( burst and are coherent.

Thin film

":-.

(b) Light reflecting from a thick film

% 1% The waves reflected from
the two surfaces are from
different bursts and are
nof cql;fr&m.

‘zl'g Thick film




Nonreflective Coatings

Destructive interference occurs when

* the film is about 7A thick and
e the light undergoes a phase change at both

reflecting surfaces,

so that the two reflected o

waves emerge from the film
about % cycle out of phase.

“Nonreflecting”
Polass = Ny =~ Mair film
Air

Film
Glass

* Video Tutor Solution: Example 35.7
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https://mediaplayer.pearsoncmg.com/assets/_video.true/secs-yf-vts-ex35-7

EXAMPLE 35.4 Thin-film interference |

Suppose the two glass plates in Fig. 35.12 are two microscope slides
10.0 cm long. At one end they are in contact; at the other end they are
separated by a piece of paper 0.0200 mm thick. What is the spacing
of the interference fringes seen by reflection? Is the fringe at the line
of contact bright or dark? Assume monochromatic light with a wave-
length in airof A = Ay = 500 nm.

Figure 35.15 Our sketch for this problem.

Ao= D00 nim'

‘.!'
oo NN
b= 10.0 crn ——

Th=0.0200mm




EXECUTE Since only one of the reflected waves undergoes a phase shift,

the condition for destructive interference (a dark fringe) is Eq. (35.18b): Ao =500 nim\

2t = mAy (m=0,12,...)

V
eSS NN
k— = 10.0 crn——

From similar triangles in Fig. 35.15 the thickness 1 of the air wedge at
each point is proportional to the distance x from the line of contact:

Combining this with Eq. (35.18b), we find

2xh
= mho

IAg (0.100 m)(500 x 107" m)
=m0 _

r=m =m = m(1.25 mm
2h (2)(0.0200 % 1077 m) ( )

Successive dark fringes, corresponding tom = 1,2, 3, .. ., are spaced
1.25 mm apart. Substituting m = 0 into this equation gives x = 0,
which is where the two slides touch (at the left-hand side of Fig. 35.15).
Hence there is a dark fringe at the line of contact.

T h=0.0200 mm



Newton’s Rings

Figure 35.16a shows the convex surface of a lens in contact with a plane glass plate.
A thin film of air is formed between the two surfaces. When you view the setup with
monochromatic light, you see circular interference fringes (Fig. 35.16b). These were stud-
ied by Newton and are called Newton’s rings.

Figure 35.16 (a) Air film between a convex lens and a plane surface. The thickness of the film ¢
increases from zero as we move out from the center, giving (b) a series of alternating dark and
bright rings for monochromatic light.

(a) A convex lens in contact with a glass plane (b) Newton’s rings: circular interference fringes

Figure 35.18 A nonreflective coating
has an index of refraction intermediate
between those of glass and air.

Destietive interference occwrs when

» the film is about 2A thick and

« the light undergoes a phase change at both
reflecting swfaces,

so that the two reflected

waves emerge from the film

about % eycle out of phase.

“Nonreflecting”
Mglazy = gy = Mgir film
Air 1
Film _{:_1 =—A
Glass \ ‘




Michelson Interferometer

M, Movable mirror
I @ Ray 1 reflects off M, passes through
PR i the compensator plate D, and reflects off

i the silvered surface P; ray 2 reflects off

(1) Monochromatic light is L, i M, and passes through the beam splitter C.

sent from light source A to

beam splitter C. ., )\ M,
} 2
Monochromatic light Fixed
A > 3 .
........ > mirror
P o ﬂ el
@ Rays | and 2 emerge V' D
from the beam splitter Beam Compensator

and travel toward mirrors

: splitter plate
M, and M,, respectively.

N
L, >

~N osnnns,,,.
W Eye @ Finally the two rays combine

and reach the observer’s eye.

Copyright © 2020 Pearson Education, Inc. All Rights Reserved



Michelson Interferometer

Suppose the angle between mirror M, and the virtual image of M, is just large enough
that five or six vertical fringes are present in the field of view. If we now move the mirror
M5 slowly either backward or forward a distance A/2, the difference in path length between
rays 1 and 2 changes by A, and each fringe moves to the left or right a distance equal to
the fringe spacing. If we observe the fringe positions through a telescope with a crosshair
eyepiece and m fringes cross the crosshairs when we move the mirror a distance y, then

A 2y
y=m=- or A=—

2 m (35.19)
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