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Series Preface

The long term aim of the Commission on Crystallographic Teaching in
establishing this pamphlet programme is to produce a large collection of
short statements each dealing with a specific topic at a specific level. The
emphasis is on a particular teaching approach and there may well, in time,
be pamphlets giving alternative teaching approaches to the same topic. It
is not the function of the Commission to decide on the ‘best’ approach
but to make all available so that teachers can make their own selection.
Similarly, in due course, we hope that the same topics will be covered at
more than one level.

The initial selection of ten pamphlets published together represents a
sample of the various levels and approaches and it is hoped that it will
stimulate many more people to contribute to this scheme. It does not take
very long to write a short pamphlet, but its value to someone teaching 2
topic for the first time can be very great.

Each pamphlet is prefaced by a statement of aims, level, necessary
background, etc.

C. A. Taylor
Editor for the Commission

The financial assistance of UNESCO, ICSU and of the International Union of Crystallog-
raphy in publishing the pamphlets is gratefully acknowledged.



Teaching Aims

To give a firm mathematical understanding of the reciprocal lattice, of
the relationships between real and rec;procal space and of their implica-
tions for X-ray diffraction.-

Level

This approach would be suitable for final year undergraduates in
physics and mathematics or for initial post-graduate students in other
disciplines provided that their mathematical background is adequate.

Background

A familiarity with vector manipulation is needed and, for certain
sections, an understanding of tensor calculus.

Practical Resources
No specific practical resources are required.

Time Regquired for Teaching
If the mathematical background is already adequate this could be
taught in 3 or 4 lectures. More would be required, however, if time has to
be spent on mathematical equations and derivations as in places the
treatment given is very concise.



The Reciprocal Lattice

A. Authier

Laboratoire de Minéralogie Cristallographie associé au C.N.R.S.-
Université Pierre et Marie Curie, PARIS

1. Introduciion

The fundamental property of a crystal is its triple periodicity and a
crystal may be generated by repeating a certain unit of pattern through
the translations of a certain lattice called the direct lattice. The macros-
copic geometric properties of a crystal are a direct consequence of the
existence of this lattice on a microscopic scale. Let us for instance
consider the natural faces of a crystal. These faces are parallel to sets of
lattice planes. The lateral extension of these faces depends on the local
physico-chemical conditions during growth but not on the geometric
properties of the lattice. To describe the morphology of a crystal, the
simplest way is to associate, with each set of lattice planes parallel to a
natural face, a vector drawn from a given origin and normal to the
corresponding lattice planes. To complete the description it suffices to
give to each vector a length directly related to the spacing of the lattice
planes. As we shall see in the next section this polar diagram is the
geometric basis for the reciprocal lattice.

On the other hand, the basic tool to study a crystal is the diffraction of
a wave with a wavelength of the same order of magnitude as that of the
lattice spacings. The nature of the diffraction pattern is governed by the
triple periodicity and the positions of the diffraction spots depend directly
on the properties of the lattice. This operation transforms the direct space
into an associated space, the reciprocal space, and we shall see that the
diffraction spots of a crystal are associated with the nodes of its reciprocal
lattice.

The reciprocal lattice is thercfore an essential concept for the study of
crystal lattices and their diffraction properties. This concept and the
relation of the direct and reciprocal lattices through the Fourier transform
was first introduced in crystallography by P. P. Ewald (1921).



2. Crystallographic Definition
2.1. Definition

Let a, b, ¢ be the basic vectors defining the unit cell of the direct lattice.
The basic vectors of the reciprocal lattice are defined by:+

«_ (bAre) «_ (ena) . . (anb)
(a, b, c) (a,b,¢) ¢ " (a,b,0) @1

The modulus of a* is equal to the ratio of the area of the face OBCG
opposite to a to the volume of the cell built on the three vectors a, b, c.
Referring to Fig. 1, we may write:

a*=1/0A" b*=1/0B' . c¢*=1/0C’ (2.2)

From the definition of the reciprocal lattice vectors, we may therefore
already draw the following conclusions:

(i) Each of the three vectors a*, b¥, ¢* is normal to a set of lattice
planes of the direct lattice (b, ¢; ¢, b; a,b) and their moduli are respec-
tively equal to the inverse of the spacings of these three sets of lattice

Fig. 1

t1n this article the symbol A is used to represent a vector product and commas (e.g.
a, b, ¢} to represent the triple product [which in this case is the volume of the unit cell].
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planes. The basic vectors of the reciprocal lattice possess therefore the
propertics that we were looking for in the introduction. We shall see in
the next section that with each family of lattice planes of the direct lattice
a reciprocal lattice vector may be thus associated.

(ii) The dimensions of the moduli of the reciprocal latticc vectors are
those of the inverse of a length. For practical purposcs the definition
equations (2.1) may be rewriticn after the introduction of a scale factor o
which has the dimension of an area:

. (bre)

a0’ 2.3)

This is only done to give the reciprocal lattice vector the dimension of
length when one wants to actually draw the reciprocal lattice and we shall
not make use of this scale factor in this paper.

From relations 2.1 it can readily be shown that the two scis of basic
vectors satisfy the following equations:

a-a*=1ectc .. a-b*=0etc... (2.4)

The two sets of equations (2.1) and (2.4) are equivalent ar.d equations
(2.4) are sometimes used as the definition equations of the reciprocal
lattice. These relations are symmetrical and show that the reciprocal
lattice of the reciprocal lattice is the direct lattice.

2.2. Fundamental law of the reciprocal iattice

(a) with each node of the reciprocal lattice whose numerical coordinates
have no common divider can be associated a set of direct lattice planes

Let M be a reciprocal lattice point whose coordinates h. k. | have no
common divider (M is the first node on the reciprocal lattice row OM),
and P a point in direct space. We may write:

OM=ha*+kb*+Ic* OP=xa+yb+zc (2.5)

Let us look for the locus of all points P of dircct space such that the
scalar product OP - OM should be constant. It is a plane normal to O and
passes through the projection H of P on OM (Fig. 2). Using 2.4, we find
easily that the equation of this plane in direct space is given by

OP-OM=0H-OM=hx+ky+lz=C (2.6)
Let us now assume that P is a node of the direct lattice:
OP=ua+uvb+we (4 v, wintegers)
The locus of P is a lattice plane of the direct lattice. Its equation is:
OH -OM=hu+kv+lw=C (2.7)
3
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Since all numbers in the left hand side are integers, we find that C is also
an integer. With each value of C we may associate a lattice plane and thus
generate a set of direct lattice planes which are all normal to the
reciprocal vector OM (Fig. 3). The distance of one of these planes to the
origin is given by:

OH=C/OM (C=-2,-1,0,1,2,3, ")

If OH, is the distance of the first plane to the origin, we may write:

OH = Cx OH,
The lattice planes have, as expected, an equal spacing:
dyy = OH,; = 1/OM = 1/, (2.8)

where Wy is the parameter along the reciprocal lattice row OM. Equa-
tion 2.8 may be rewritten:

it * N =1 (2.9)

This is the fundamental relation of the reciprocal lattice which shows that
with any node M of the reciprocal lattice whose nwmerical coordinates
have no common divider we may associate a set of direct lattice planes
normal to OM. Their spacing is inversely propamonaf to the parameter
along the reciprocal row OM.

In order that the correspondence between direct and reciprocal lattice
should be fully established, the converse of the preceding theorem should
also be demonstrated. This will be done in paragraph 2.2(c).
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It is interesting at this point to give an interpretation to the reciprocal
lattice points whose numerical coordinates have a common divider. Let us
consider such a point for which:

OM = ha* + kb*+ [¢**
where
h=nhy; k= nk,: l=nl,
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hy, k;, l; have no common divider. We may write:
OM=nOM,

where M, is the first node on the reciprocal lattice row OM.
Let dy, i, be the spacing of the direct lattice planes associated with M.
The fundamental law of the reciprocal lattice may be written:

dh.k.!. a J\’]..k.f. =1
We may also write:

1

'; dh.u,l. ' ’th,k.ll =1
1 (2.10)
;l-d"lkt'u ~ OM= 1

In other words, with the reciprocal lattice node M may be associated a
set of fictitious planes in direct space whose spacing is n times smaller
than the real lattice spacing. We shall see that in diffraction by crystal
lattices a reciprocal lattice point may be associated with each Bragg
diffraction: if the coordinates of this point have no common divider,
Bragg’s law is satisfied to the first order (2d sin 8§ =A); if they have a
common divider, n, Bragg’s law is satisfied to the nth order (2d sin 6 =
ni), one may also say it is satisfied to the first order for the fictitious
lattice planes of spacing d/n (2d/n sin @ =A) and this is what is actually
always done in practice.

(b) Miller indices
Let us consider one particular lattice plane of equalion

hx+ky+lz=C

and let Q, R and S be its intersections with the three axes, respectively
(Fig. 4); we have:

x=Clh;OQ=a-Clh y=Clk;OR=b-Clk z=CJl;0S=c-CJl

We conclude that the lattice plane intercepts, along the threc axes,
lengths which are inversely proportional to three integers which have no
common divider. This is the so-called Law of Rational Indices or Hauy
Law. The three indices are called the Miller indices.

The planes which are crystallographically the most important ones are
the densest ones, that is those with the largest spacing. Equation (2.9)
tells us that they are associated with the shortest vectors in reciprocal
lattice and that their Miller indices are therefore small. This is the reason
why Hauy's law was also called the law of simple rational indices.
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(¢) The reciprocal law: to each set of direct lattice planes corresponds a
reciprocal lattice vector

Let us consider a set of direct lattice planes of equation:
hx+ky+lz=C

Since x, y. z may be integers, h, k, and | are also integers. If C=1,
corresponding to the first plane in the family, h, k and [ have no common
divider. Let us now consider the reciprocal lattice vector

ONM‘; =ha*+ kb* + Ic*
Its scalar products with the vectors QR and RS (Fig. 4) are respectively
equal to:

ON,..: - QR =(ha*+kb* + Ic*)(g b . a)

k  h
ON, - RS =(ha*+kb*+ !c*)(% c-% b)

They are both equal to zero, which shows that the reciprocal lattice
vector is normal to the set of direct lattice planes; the scalar product of

7



ON,,; by GP where P is any direct lattice node in a plane of the set can
be written in the form of equation (2.6). The reciprocal theorem is thus
demonstrated.

3. Reciprocal Space and Dual Space

3.1. Definition

Let us now call e, the basic vectors of a vectorial space and x' the
coordinates of a given vector x. We may write:

x=x'e, = x'e, +x%,+x%; (3.1)

using Einstein’s summation convention. A change of coordinates may be
described by the following relations:

e/=Ale; e=Ble x"=Bixl; x'=Al"
ABl =8} =1 if i=k; 6=0 if i#k)
quantities with a subscript transform in a change of coordinate like the
basic vectors and are called covariant; those with a superscript transform

like the coordinates and are called countervariant. Let us now consider
the scalar products:

(3.2)

x;=x-e =x'e ‘e =x'g, | (3.3)
where we put
g;’; =e" e,- (3.4)

The nine quantities g; are the components of the so-called metric tensor.
We shall show that the three quantities x; are the covariant coordinates of
x. The system of equations (3.3) expresses the x; in terms of the x'. We
can resolve this system and write

x'=xg" (3.5)
where
g = 8i (3.6)

This can always be written since the determinant built on the g; is
different from zero by definition of the scalar product.
Let us now introduce the following set of vectors

e =gle (3.7)

This set of vectors constitutes a set of basic vectors. To show this we
may simply transform equation (3.1):

x=x'e,=xg"e; = x¢ 3.8)
8



The vectors e' constitute therefore a set of basic vectors and the X; are
the coordinates of x with respect to this base. They are called counter-
variant basic vectors. They are also identical to the basic vectors of the
reciprocal space. This can easily be demonstrated by showing that they
satisfy the basic relations (2.3) of the reciprocal space vectors. Let us
consider the scalar products e; *e'. Using (3.7), (3.4) and (3.6), we may
write:

e e =ghe e = gjkg.'k =8l
which is indeed idenlical to 2.3.

3.2. The volumes of the unit cells in direct and reciprocal space are

inverse
Let V be the volume of the unit cell. In a change of c;)ordinate:
e, xe/B! (3.9)
we have
V=V'A(B)

where A(B) is the determinant built on Bl In the same way, we may
write:

Ag; =AglA(B)? (3.10)
Let us now assume that the base e; is orthonormal. There comes:
V=A(B), Ag;,=A(B)? (3.11)
We have then demonstrated the following general result:
Ag,=V? (3.12)
From (3.6) we know that
. Ag, -Agi=1 (3.13)
It is easy to show the following relation, equivalent to (3.12):
Agh=y*? (3.14)

where V* is the volume of the unit cell in reciprocal space.
From (3.12), (3.13) and (3.14), we obtain finally:

V-v¥=1
3.3. Calculation of the reciprocal lattice vectors using the metric tensor

Relation (3.7) is the most convenient one to use to compute the
reciprocal lattice parameters or any quantity related to them. Let a, b, ¢
and @, B, v be the direct lattice parameters. The doubly covariant

9



coefficients of the metric tensor are then:
a? ab cosy accos
g; =| ab cos y b? be cos a (3.15)
accos B bccos a c?

Its determinant, that is the squarc of the volume of the direct lattice
unit cell is equal to:
V2= q2h2c*(1+2 cos @ cos B cos ¥ —cos? a —cos® B —cos” )
(3.16)

By inversing 3.15 we obtain the doubly contravariant of the metric
tensor, g

b2e?sin?a abc?(cos e cos B—cosy) ab®c{cos & cos y—cos B)
v2 v? v2
abe?(cos « cos B —cos ) a*c*sin? B a2be(cos B cos v —cos ) (3.17)
V2 v2 V2 "
ab®*c(cos « cos B —cosy) a*be(cos B cosy—cos a) a*h?sin®y
V: = 4 VZ vz

Using (3.17), we can easily obtain the following relations:

b%c*sin* abc? ab®*c '
af= vz A V2 (cos a cos B —cosy)b + vz (cos e cos y —cos B)e
be sin a
=3
F= 21
v (3.18)
oo ¥ =280 Ccos 3 —cos ¥
|sin a sin B]

4. Crystallogfaphic Calculations Using the Reciprocal Lattice

4.1. Scalar product of direct and reciprocal lattice vectors
Let us consider a direct lattice vector

ua+uvb+we
and a reciprocal lattice vector
ha®™+ kb*+ [c™
Using (2.3), their scalar product is equal to:
hu+ko+lw
10



4.2. Vector product of two direct lattice vectors
Let us consider two direct lattice vectors:

n, =u,a+uv,b+we n, = wpa+v,b+ w,e

Their vector product is equal to:

LR
usvy

U]Wl W;ul

bac+

n; AN, = caat anb

D Wo Wolly

Using the definition (2.1) of the basic reciprocal vectors, we may write:

v Wy
Uy Wp

Wit

Walis

Uy
U U,y

man,=V b*+V c* (4.1)

la"‘+ v

This shows that the vector product of two direct lattice vectors is
easily expressed in terms of the basic reciprocal vectors.

4.3. Indices of the set of lattice planes parallel to two direct lattice rows

The vector product of two vectors my, and n, respectively paraliel to
these two rows is normal to the set of lattice planes and is therefore
parallel to the reciprocal lattice vector associated with the lattice planes.
If h, k, | are its indices, we may therefore write:

A

W= UaWy Wi ldy — Wally Uy U — ULy

(4.2)

4.4. Zone axis of two sets of direct lattice planes -

Let hy, ky, Iy and hy, k,. I; be the Miller indices of the two sets of direct
latticc planes. The vector product of the two reciprocal lattice vectors
associated with them is necessarily parallel to their zone axis. The
coordinates of this zone axis are therefore given by:

I B v B W
ll:|.ll: == k:.ﬂ h f,!r: .f:.h‘] .hpt': = jJ:nh

(4.3)

4.5. Reciprocity of F and I lattices

Let us consider a face-centered lattice. It is well known that the basic
vectors &', b’, ¢/, of the elementary cell are given in terms of the vectors
a,b, ¢ of the face centered cell by (Fig. 5):

b+e atce a+b
a'=— b=— ol =— 4.4
.2 2 2 S

In a similar way, the basic vectors a”, b", ¢” of the elementary cell of a

body centered lattice are given in terms of the basic vectors of the

11



multiple cell by (Fig. 6):
_—a+b+e b,,_amb—!-c cn_a+b-c
2 2 2
Let us now look for the reciprocal lattice of the face-centered lattice.
Its unit cell vectors are given by, using (2.1) and (4.4):

"

(4.5)

Le]

- o




Noting that the face-centered cell is of the fourth order, we find:

w__CSAb - SAa anb
(a,b,c) (a,b,c) (a,b,c)

We may thus express a™ in terms of the basic vectors of the reciprocal
lattice of the lattice of vectors a, b, ¢:

a*=—g¥4+p¥+c*
This may also be written:

s —(28%)+(2b%) + (2¢%)
2

a

This relation shows that the reciprocal lattice of a face-centered lattice
is a body centered lattice whose multiple cell is defined by 2a*, 2b*, 2¢*.
If we index the reciprocal lattice defined by a*, b*, ¢*, that is the recip-
rocal lattice of the multiple lattice defined by a, b, ¢. we find that only the
nodes such that

h+k=2n k+1=2n' [+h=2n"

belong to the reciprocal lattice of the face-centered lattice. This shows
that the only Bragg reflexions on a face-centered lattice have indices
which are all of the same parity.

5. Diffraction Condition in the Reciprocal Lattice

Let us consider a plane monochromatic wave incident on a crystal and
let k, =s,/A be its wave vector. Each scatterer will diffuse this wave in
every direction with the same wavelength (coherent scattering). The total
amplitude scattered in a particular direction s, will be obtained by
summing the amplitudes scattered in this particular direction by all
scatterers, taking into account their phase relations. Let A and B be two
homologous points in the structure, that is AB=r is a direct lattice
vector. The phase differences between the waves scattered by A and B is
equal to:

p=2n %) | (5.1)
A
(s, and s, are unit vectors in the reflected and incident directions,
respectively).

There will be diffraction of the incident wave by the crystal if the
wavelets diffracted by all homologous points are in phase, that is if ¢ is
equal to an integer times 2+ whatever the direct lattice vector r. The

13



phase ¢ may also be written:
d=27R-r (5.2)

where R= (s, —s,)/A is the so-called diffusion vector.
The modulus of the diffusion vector has the dimension of the recnproca!
of a length. R can therefore be expanded in reciprocal space:

R=ha*+kb*+Iic*

The position vector r can in the same way be expressed in terms of its
coordinates u, v, w in direct space. Applying relations (2.3), we may
thercfore write the phase difference ¢ in the following way:

b= 21r(hu+iv+fw) (ﬁ 3)

We may note that u, v, w being the coordinates of a dtrect lattice vector
are integers. If ¢ is to be equal to an integer times 27 whatever u, v, w,
we conclude that h, k, | are necessarily also equal to integers; in other
words, the diffusion vector is a reciprocal lattice vector. This is the diffrac-
tion condition in reciprocal space. Bragg’'s law and the Ewald sphere
construction are easily deduced from this result.

Let O be the origin of the reciprocal lattice and IO and IH vectors
respectively equal to s,/A and s;/A. The vector OH is therefore equal to R
(Fig. 7). If the diffraction condition is satisfied, H is a reciprocal lattice
node. We have therefore the following construction: we draw through O
a line parallel to the incident direction. let IO = 1/A, then draw a sphere
centered in [ with radius 1/A. If it passes through another reciprocal
lattice node H, there is a reflected beam parallel to TH.

We may notice in the triangle IOH that QH/2=IH Xsin 6, calling 0
the angle between IO or IH with the bissectrix of OIH, that is with the
trace of the set of direct lattice planes associated with the node H.

We know from (2.8) that

n
OH-E

where d is the lattice spacing of the direct lattice planes and n the order
of H along the reciprocal lattice row OH. We find thus that:

n _sin@
2d A

which is of course Bragg’s law.

A reciprocal lattice node may thus be associated with each Bragg reflection.

This result can also be obtained directly through the properties of
Fourier transforms. The basic assumption of the geometrical theory of

14



Fig. 7

diffraction is that the amplitude of the incident wave at each scatterer is
constant. This assumption is acceptable if the interaction between the
incident wave and the scatterers is small enough. The total diffracted
amplitude in a given direction is therefore simply equal to the sum of the
amplitudes scattered in this direction by every scatterer, taking into
account their phase relationships. It is equal to:

A=A, J j J.p(l')e'z"m"d-r (5.4)

using (5.1) and (5.2). A, is the amplitude diffracted by one scatterer and
p(x) the density of scatterers electrons if we consider X-ray diffraction for
instance. The integral is extended over the volume of the crystal. We shall
assume it here to be infinite. Expression (5.4) shows that the distribution
of diffracted amplitudes is the Fourier transform of the electron density

15



p(r). If the diffracting medium is crystalline, it is triply periodic. The
Fourier transform of p(r) is then a distribution of Dirac masses at each
reciprocal lattice node. The weight associated with each one of them is
equal to the structure factor:

Fyy= Aﬂ” _I'fl‘(l‘)ﬁhz"i'.‘l dc
unit cell (5.5)

=) fie 2" (hx; +ky, +1z;)
i

where f; is the form factor of atom j and x;, y;. z; its numerical coordinates
in the unit cell.

16



International Union of
Crystallography Commission on
! Crystallographic Teaching

} List of bookiets in the first series

1
A non-mathematical introduction to X-ray diffraction
by C.A. Taylor
2

An introduction to the scope, potential and applications of X-ray analysis
by M. Laing
3
Introduction to the Calculation of Structure Factors
by §.C. Wallwork
4
The Reciprocal Lattice
by A. Authier
5
Close-packed structures
by P. Krishna and D. Pandey
6
Pourquoi les groupes de Symetrie en Cristallographie
by D. Weigel
7

Solving the phase problem when heavy atoms are in special positions
by L. Hohne and L. Kutchabsky
- 8
Anomolous Dispersion of X-rays in Crystallography
by S. Caticha-Ellis

9

! Rotation Matrices and Translation Vectors in Crystallography

by S. Hovmaéller
10
Metric Tensor and Symmetry operations in Crystallography
by G. Rigault

Price 95p each
Auvailable from
University College Cardiff Press,
P.O.Box78
Cardiff CF1 1XL
United Kingdom

|
|
:f Cheques should be made payable to University College Cardiff



