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Series Preface 

The  long term aim of the Commission on Crystallographic Teaching in 
establishing this pamphle t  p rogramme is to produce a large collection of 
short s tatements each dealing with a specific topic at a specific level. The  
emphasis is on a particular teaching approach and there may well, in time, 
be  pamphlets  giving alternative teaching approaches to the same topic. It  
is not the function of the Commission to decide on the 'best '  approach 
but to make  all available so that teachers can make  their own selection. 
Similarly, in due course, we hope that the same topics will be covered at 
more  than one level. 

The  initial selection of ten pamphlets  published together  represents a 
sample of the various levels a n d a p p r o a c h e s  and it is hoped that it will 
stimulate many more  people to contribute to this scheme. It  does not take 
very long to write a short pamphlet ,  but its value to someone  teaching a 
topic for the first t ime can be very great: 

Each pamphle t  is prefaced by a s ta tement  of aims, level, necessary 
background,  etc. 

C. A. Taylor  
Edi tor  for the Commission 

The financial assistance of UNESCO, ICSU and of the International Union of Crystallog- 
raphy in publishing the pamphlets is gratefully acknowledged. 



Teaching Aims 

To give a firm mathematical understanding of the reciprocal lattice, of 
the relationships between real and reciprocal space and of their implica- 
tions for X-ray diffraction.- 

Level 
This approach would b e  suitable for final year undergraduates in 

physics and mathematics or for initial post-graduate students in other 
disciplines provided that their mathematical background is adequate. 

Background 
A familiarity with vector manipulation is needed and, for certain 

sections, an understandingof tensor calculus. 

P rac t i ca l  Resources 
No specific practical resources are required. 

Thne Required for Teaching 
If the mathematical background is already adequate this couId be 

taught in 3 or 4 lectures. More would be required, however, if time has to 
be spent on mathematical equations and derivations as in places the 
treatment given is very concise. 



The Reciprocal Lattice 

A .  A u t h i e r  

Laboratoire de Min6ralogie Cristallographie associ6 au C.N.R.S . -  
Universit6 Pierre et Marie Curie, PARIS 

1. Introduction 

The fundamental property of a crystal is its triple periodicity and a 
Crystal may be generated by repeating a certain unit of pattern through 
the translations of a certain lattice called the direct lattice. The macros- 
copic geometric properties of a crystal are a direct consequence of the 
existence of this lattice on a microscopic scale. Let us for instance 
consider the 'natural  faces of a crystal. These faces are parallel to sets of 
lattice planes. The lateral extension of these faces depends on the local 
physieo-chemical conditions during g-rowth but not on the geometric 
properties of the lattice. To describe the morphology of a crystal, the 
simplest way is to associate, with each set of lattice planes parallel to a 
natural face, a vector drawn from a given origin and normal to the 
corresponding lattice planes. To complete the description it suffices to 
give to each vector a length directly related to the spacing of the lattice 
planes. As we shall see in the next section this polar diagram is the 
geometric basis for the reciprocal lattice. 

On the other hand, the basic tool to study a crystal is the diffraction of 
a wave with a wavelength of the same order of magnitude as that of the 
lattice spacings. The nature of the diffraction pattern is governed by the 
triple periodicity and the positions of the diffraction spots depend directly 
on the properties of the lattice. This operation transforms the direct space 
into an associated space, the reciprocal space, and we shall see that the 
diffraction spots of a crystal are associated with the nodes of its reciprocal 
lattice. 

The  reciprocal lattice is therefore an essential concept for the study of 
crystal lattices and their diffraction properties. This concept and the 
relation of the direct and reciprocal lattices through the Fourier transform 
was first introduced in crystallography by P. P. Ewald (.1921). 



2 .  C r y s t a l l o g r a p h i c  D e f i n i t i o n  

2.1. Definition 

Let  a, b, c be the basic vectors defining the unit cell of  the direct lattice. 
The  basic vectors of the reciprocal  lattice are defined by:# 

a* - (b A C) b* = (c A a_.__~) c* = (a A b) 
(2.1) (a, b, c) (a, b, c) (a, b, c) 

The  modulus  of a* is equal to the ratio of the area of the face OBCG 
opposi te  to a to the vo lume of the cell built on the three vectors a, b, c. 
Referr ing to Fig. 1, we may  write:  

a * =  1/OA'  b * =  1/OB'  c*=  110C'  (2.2) 

From the definition of the reciprocal lattice vectors,  we may therefore  
already draw the following conclusions:  

(i) Each  of the three vectors  a*, b*, c* is normal  to a set of  lattice 
planes of the direct lattice (b, c; c, b;  a, b) and their moduli  are respec- 
tively equal to the inverse of the spacings of these three sets of  lattice 
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1In this article the symbol A is used to represent a vector product and commas (e.g. 
a, b, ¢) to represent the triple product [which in this case is the volume of the unit cell]. 



planes. The  basic vectors of the reciprocal lattice possess therefore the 
properties that we were looking for in the introduction. We  shall see in 
the next section that with each family of lattice planes of the direct lattice 
a reciprocal lattice vector may be thus associated. 

(ii) The  dimensions of the moduli of the reciprocal lattice vectors are 
those of the inverse of a lcngth. For practical purposes the definition 
equations (2.1) may be rewritten after the introduction of a scale factor cr 
which has the dimension of an area: 

a* = (b A c) 
- -  ~r (2.3) 
(a, b, c) 

This is only done to give the reciprocal lattice vector the dimension of 
length when one wants to actually draw the reciprocal lattice and we shall 
not make use of this scale factor in this paper.  

From relations 2.1 it can readily be shown that the two sets of basic 
vectors satisfy the following equations: 

a • a * =  1 e t c . . ,  a • b * =  0 e t c . . .  (2.4) 

The  two sets of equations (2.1) and (2.4) are equivalent ar.d equations 
(2.4) are somet imes  used as the definition equations of the reciprocal 
lattice2 These relations are symmetrical and show that the reciprocal 
lattice of the reciprocal lattice is the direct lattice. 

2.2 .  F u n d a m e n t a l  law of  the reciprocal  lattice 

(a) with each node of the reciprocal lattice whose numerical coordinates 
h a v e n o  common divider can be associated a set of direct lattice planes 

Let M be a reciprocal lattice point wiaose coordinates h. k. I have no 
common divider (M is the first node on the reciprocal lattice row a M ) ,  
and P a point in direct space. We may write: 

O M = h a * + k b * + l c *  O P = x a + y b + z c  (2.5) 

Let us look for the locus of all points P of dircct space such that the 
scalar product O P  • a M  should be constant. It  is a plane normal to O and 
passes through the projection H of P on a M  (Fig. 2). Using 2.4, we find 
easily that the equation of this plane in direct space is given by 

O P -  a M  = O H -  a M  = hx + ky + Iz = C (2.6) 

Let us now assume that P is a node of  the direct lattice: 

O P =  u a + v b +  we (u, v, w integers) 

The locus of p is a lattice plane of the direct lattice. Its equation is: 

O H -  a M  = l',u + kv + Iw = C (2.7) 
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Fig. 2 

Since all numbers in the left hand side are integers, we find that C is also 
an integer. With each value of C we may associate a lattice plane and thus 
generate a set of direct lattice planes which are all normal to the 
reciprocal vector OM (Fig. 3). The  distance of one of these planes to the 
origin is given by: 

O H  = C I O M  (C = - 2 ,  - 1 ,  0, 1, 2, 3, • • -) 

If OH1 is the distance of the first plane to the origin, we may write: 

O H  = C x OH1 

The lattice planes have, as expected, an equal spacing: 

dhkl = OH1 = 1 / O M  = 1/J~kz (2.8) 

where Nhk~ is the parameter  along the reciprocal lattice row OM. Equa- 
tion 2.8 may be rewritten: 

dhk, " Nhkz = 1 (2.9) 

This is the fundamental  relation of the reciprocal lattice which shows that 
with any node M of the reciprocal lattice whose numerical coordinates 
have no common divider we may associate a set of direct lattice planes 
normal to OM. Their spacing is inversely proportional to the parameter 
along the reciprocal row OM. 

In order that the correspondence between direct and reciprocal lattice 
should be fully established, the converse of the preceding theorein should 
also be demonstrated. This will be done in paragraph 2.2(c). 
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I t  is in te res t ing  at this  po in t  to  give an i n t e rp re t a t i on  to ~he rec iproca l  
la t t ice  po in t s  whose  numer i ca l  coo rd ina t e s  have  a c o m m o n  divider .  Le t  us 
cons ide r  such a po in t  for  which:  

OM = ha* + kb* + / c * *  

w h e r e  

h = nhG k = nk l :  l =  rill 
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hi, k~, 11 have no common divider. We  may write: 

OM = n OM1 

where MI is the first node on the reciprocal lattice row OM. 
Let d~,,k,~, be the spacing of the direct lattice planes associated with M. 

The fundamental law of the reciprocal lattice may be written: 

d<ka, • ~/',,,k,~, = 1 

We may also write: 

1 
- d j , , < z ,  • n X < k , ~ ,  = 1 
n 

1 
-- dh,k,i, " OM-'- 1 
gl 

(2.10) 

In other words, with the reciprocal lattice node M may be associated a 
set of fictitious planes in direct space whose spacing is n times smaller 
than the real lattice spacing. We shall see that in diffraction by crystal 
lattices a reciprocal lattice point may be associated with each Bragg 
diffraction: if the coordinates of this point have no common divider, 
Bragg's law is satisfied to the first order  (2d sin 0 =A);  if they have a 
common divider, n, Bragg's  law is satisfied to the nth order (2d sin 0 = 
na.), one may also say it is satisfied to the first order  for the fictitious 
lattice planes of spacing din (2d/n sin 0 =,t.) and this is what is actually 
always done in practice. 

(b) Miller indices 

Let us consider one particular lattice plane of equation 

h x + k y + I z = C  

and let Q, R and S be its intersections with the three axes, respectively 
(Fig. 4); we have: 

x=C/h ;  O Q = a . C / h  y = C / k ;  O R = b . C / k  z=C/ l ;  O S = c . C / l  

We conclude that the lattice plane intercepts, along the three axes, 
lengths which are inversely proportional  to three integers which have no 
common divider. This is the so-called Law of Rational Indices or Hauy  
Law. The  three indices are called the Miller indices. 

The planes which are crystallographically the most important  ones are 
the densest ones, that is those with the largest spacing. Equation (2.9) 
tells us that they are associated with the shortest vectors in reciprocal 
lattice and that their Miller indices are therefore small. This is the reason 
why Hauy ' s  law was also called the law of simple rational indices. 
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(c) The reciprocal law: to each set of direct lattice planes corresponds a 
reciprocal lattice vector 

Let us consider a set of direct lattice planes of equation: 

hx + ky + lz = C 

Since x, y, z may be integers, h, k, and l are also integers. If C =  1, 
corresponding to the first plane in the family, h, k and I have no common 
divider. Let us now consider the reciprocal lattice vector 

ON~,k~ = ha* + kb* +/c* 

Its scalar products with the vectors QR and RS (Fig. 4) are respectively 
equal to: 

ON,,u, " QR =(ha* + kb* + Ic*)(C b - C  a) 

, C C 
O N , , u . R S = ( h a * + k b * + l c  )(~ c -~ -  b) 

They are both equal to zero, which shows that the reciprocal lattice 
vector is normal to the set of direct lattice planes; the scalar product of 
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ONhkt by OP where  P is any direct lattice node  in a plane of the set can 
be written in the form of equat ion (2.6). T he  reciprocal theorem is thus 
demonst ra ted .  

3. Reciprocal  Space and Dual  Space 

3.1. Definition 
Let us now call e~ the basic vectors of  a vectorial  space and x ~ the 

coordinates  of a given vector  x. We may write: 

X = x i e i  = x l e  1 + x2e2 -l- x3e3 (3.1) 

using Einstein 's  summat ion  convent ion.  A change of coordinates  may be 
described bv the following relations: 

e / = A i e , ;  eg=B{e;  x " = B i x '  ; x ' = A i x "  
(3.2) 

A i B k - S k  ( 8 = i  if i = k ;  8 = O  if i ~ k )  

quantities with a subscript t ransform in a change of coordina te  like the 
basic vectors and are called c o v a r i a n t ;  those with a superscript  t ransform 
like the coordinates  and are called c o u n t e r v a r i a n t .  Let  us now consider  
the scalar products :  

xi = x . ei = xie~ • e~ = xJgii (3.3) 

where we put 

gii = ei "ej (3.4) 

The  nine quantities g~i are the componen t s  of the so-called metric tensor.  
We  shall show that  the three quantit ies x~ are the covariant  coordinates  of 
x. The  system of equat ions  (3.3) expresses the x~ in terms of  the x ~. We  
can resolve this system and write 

x ~ = x~g ii (3.5) 

where 

g'% = 8~ (3.6) 

This can always be written since the de terminant  built on the g~i is 
different f rom zero by definition of the scalar product .  

Let  us now int roduce the following set of vectors 

e i = giJei (3.7) 

This set of vectors  consti tutes a set of  basic vectors. To  show this we 
may simply t ransform equat ion (3.1): 

x = xiei = xig~ej. = xje ~ (3.8) 

8 



The  vectors  e ~ const i tute therefore  a set of  basic vectors  and the x i are 
the coordinates  of x with respect  to this base. They  are called counter -  

v a r i a m  basic vectors.  They  are also identical to the basic vectors  of  the 
reciprocal  space. This can easily be demons t ra ted  by showing that they 
satisfy the basic relat ions (2.3) of the reciprocal space vectors.  Let  us 
consider  the scalar products  el • e ~. Using (3.7), (3.4) and (3.6), we may  
write: 

ei • e i = gJkei • ek = gikgik = ~ 

which is indeed identical to 2.3. 

3.2.  The volumes of the unit cells in direct and reciprocal space are 
inverse 

Let  V be the volume of  the unit Cell. In a change of Coordinate: 

ei x e;B~ (3.9) 

we have 

V = V 'A(B)  

where  A(B) is the de terminant  built on B{. In the same way, we may 
write: 

t A g~i =Agi iA(B)-  (3.10) 

Let  us now assume that the base e i is o r thonormal .  There  comes:  

V = A(B), Ag,j = A(B) 2 (3.11) 

W e  have then demons t ra ted  the following general  result: 

Agii = V 2 (3.12) 

F rom (3.6) we know that 

Agij • Ag i i= 1 (3.13) 

It  is easy to show the following relation, equivalent  to (3.12): 

Ag i i= V .2 (3.14) 

where  V* is the vo lume of the unit cell in reciprocal  space. 
F rom (3.12), (3.13) and (3.14), we obtain finally: 

V ' V * = I  

3.3.  Calculation of the reciprocal lattice vectors using the metric tensor 

Relat ion (3.7) is the most  convenient  one  to use to compute  the 
reciprocal  lattice parameters  or  any quanti ty related to them. Let  a, b, c 

and a, t9, 3' be the direct lattice parameters .  The  doubly  covariant  

9 



coefficients of the metr ic  tensor  are then:  

a 2 ab cos 3, ac cos/3~ 

g(i = ab cos 3' b 2 bc cos o~ I~  (3.15) 

\ a c  cos/3 bc cos 1~ C 2 ] 

Its de terminant ,  that  is the square  of the volume of  the direct  lattice 

unit cell is equal to: 

V 2 =  a 2 b 2 c 2 ( 1 + 2  cos a cos/3 cos 3 ' -  cos 2 a - c o s  2 13 - c o s  2 V) 
(3.16) 

By inversing 3.15 we  obtain the doubly  contravar iant  of the metr ic  

tensor,  g~i 

abc2(cos ~ V) 

ab2c(cos ~ cos fl-cos T) 
V 2  . 

abc2(cos e~ cos /3  - cos 3') 

V 2 

aZc = sin =/3 

V = 

a=bc(cos (3 cos  ",, - cos a )  

V 2 

ab2c(cos a cos  T - c o s  1 3 ) \  

- -  V - - 7 - - - ~  - -  

a2bc(cos (3 cos  3 ' -  cos  ~ ) /  
/ 

/ 
a2b= sin2 Y / 

-¢2 / 

(3.17) 

Using (3.17), we can easily obtain the  following relations: 

a - .  ~ 
b2c 2 sin 2 a abc 2 . , ab2c .  

V2 a +--QS- (cos c~ cos/3 - cos 7)b +---X,~- (c°s c~ c°s  Y - c°s/3)c 

bc sin a 
a* = (3.18) 

V 

cos a cos/3 -cos T 
COS 3 ' *  - -  

Isin a sin/31 

4.  Crys ta l l ograph ic  C a l c u l a t i o n s  U s i n g  the  R e c i p r o c a l  Lat t i ce  

4.1. Scalar product of direct and reciprocal lattice vectors 

Let  us consider  a direct  lattice vec tor  

ua + vb + wc 

and a reciprocal lattice vec tor  

h a * +  k b * +  lc* 

Using (2.3), their scalar p roduc t  is equal to: 

h u  + k v  + Iw 

10 



4.2. V e c t o r  p r o d u c t  o f  t w o  d i r e c t  l a t t i c e  v e c t o r s  

Let us consider two direct lattice vectors: 

nl=uaa+vlb+wte nz=u2a+v2b+w2 c 

Their  vector product is equal to: 

o~wl wlu~ c tqv~ a A b  
n l A n 2  = b A c +  A a +  

D 2 W 2  W21.~ 2 I,~2 L] 2 

Using the definition (2.1) of the basic reciprocal vectors, wc may write: 

V ~twl a * + V  wlul b * + v l u t V l l c *  nlAn2 = (4.1) 
U2 W2 1 l&' 2 L/2 [ 1 L/2/32 1 

This shows that the vector product  of two direct lattice vectors is 
easily expressed in terms of the basic reciprocal vectors. 

4.3. I n d i c e s  o f  t h e  s e t  o f  lattice planes parallel to two direct lattice rows 

The  vector product of two vectors nl and n2 respectively parallel to 
these two rows is normal to the set of lattice planes and is therefore 
parallel to the reciprocal lattice vector  associated with the lattice planes. 
If h, k, l are its indices, we may therefore write: 

h k l 
- ( 4 . 2 )  

D 1 W  2 - -  I)214) 1 W l M  2 - -  1'~2 Z,l 1 [,111'02 - -  [[2U1 

4.4. Zone  a x i s  o f  t w o  s e t s  o f  d i r e c t  lattice planes 

Let  hi, k~, It and h2, k2, I2 be the Miller indices of the two sets of direct 
lattice planes. The vector product of the two reciprocal lattice vectors 
associated with them is necessarily parallel to their zone axis. The  
coordinates of this zone axis are therefore given by: 

.- /2 l) W 
(4.3) 

kl lz-k2l t  llhz-12h( haI2-hzll 

4.5. Reciprocity of F and I lattices 

Let us consider a face-centered lattice. It is well known that the basic 
vectors a', b ' ,  c', of the e lementary cell are given in terms of the vectors 
a, b, c of the face centered cell by (Fig. 5): 

b + c  a + c  a + b  
a' = - -  b' - c'  - ( 4 .4 )  

2 2 2 

In a similar way, the basic vectors a", b", c" of the elementary cell of a 
body centered lattice are given in terms of the basic vectors of the 

11 
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m u l t i p l e  cel l  by  (Fig.  6): 

a,, = - a  + b +  e b , , _  a -  b + ¢ _ _  ¢,, = a + b - c  (4 .5 )  
2 2 2 

Let  us now look  for  the  rec ip roca l  la t t ice  of the  f a c e - c e n t e r e d  lat t ice.  
I ts  uni t  cell vec tors  a re  given by,  using (2.1) and (4.4): 

{'(a + c) , ,  (a + b)'~ / . . . .  
~'*= k - T - / \ - - g - ) / ~ .  ,~, e) 

f 
b' 

. 

,1__ 
J / 

d" 
Q 

. t J  j ' ' f  

/ I 
! 

I ,  

I 
I 

j_ 
s 

s 
/ 

C t 

F'/g. 6 
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Noting that the face-centered cell is of the fourth order, we find: 

c a b  CAa aAb aJ* _ _ _  1 - - - +  
(a,b,c) (a,b,c) (a,b,c) 

We may thus express a'* in terms of the basic vectors of the reciprocal 
lattice of the lattice of vectors a, b, c: 

a'*  = - - a *  + b *  + e *  

This may also be written: 

a'+ = -(2a*) + (2b*) + (2c*) 
2 

This relation shows that the reciprocal lattice of a face-centered lattice 
is a body centered lattice whose multiple cell is defined by 2a*, 2b*, 2c*. 
If we index the reciprocal lattice defined by a*, b*, c*, that is the recip- 
rocal lattice of the multiple lattice defined by a, b, c, we find that only the 
nodes such that 

h + k = 2 n  k + l = 2 n '  I + h = 2 n "  

belong to the reciprocal lattice of the face-centered lattice. This shows 
that the only Bragg reflexions on a face-centered lattice ha~e indices 
which are all 'of the same parity. 

5.  D i f f rac t ion  C o n d i t i o n  in t h e  R e c i p r o c a l  Lat t i ce  

Let us consider a plane monochromatic wave incident on a crystal and 
let ko = so/A be its wave vector. Each scatterer will diffuse this wave in 
every direction with the same wavelength (coherent scattering). The total 
amplitude scattered in a particular direction sh wilI be obtained by 
summing the amplitudes scattered in this particular direction by all 
scatterers, taking into account their phase relations. Let A and B be two 
homologous points in the structure, that is A B = r  is a direct lattice 
vector. The phase differences between the waves scattered by A and B is 
equal to: 

(ss,-So) 
4 ,  = 2 ~  - -  • r ( 5 . 1 )  

)t 

(sh and so are unit vectors in the reflected and incident directions, 
respectively). 

There  will be diffraction of the incident wave by the crystal if the 
wavelets diffracted by all homologous points are in phase, that is if 4, is 
equal to an. integer times 2~r whatever the direct lattice vector r. The  

13 



phase 05 may also be written: 

q5 = 2wR"  r (5.2) 

where R = (sh-so)/X is the so-called diffusion vector. 
The modulus of the diffusion vector has the  dimension of the reciprocal 

of a length. R can therefore be expanded in reciprocal space: '~ 

R =  ha* + kb*+ /c*  

The position vector r can in the same way be expressed in terms of its 
coordinates u, v, w in direct space. Applying relations (2.3), we may 
therefore write the phase difference 05 in the following way: 

ch = 2~(hu  + kv + hv) (5.3) 

We may note that u, v, w being the coordinates of a direct lattice vector 
are integers. If 05 is to be equal to an integer times 27r whatever u, v, w, 
we conclude that h, k, l are necessarily also equal to integers; in other 
words, the diffusion vector is a reciprocal lattice vector. This is the diffrac- 
tion condition in reciprocal space. Bragg's law and the Ewald sphere 
construction are easily deduced from this result. 

Let  O be the origin of the reciprocal lattice and IO and IH vectors 
respectively equal to so/X and s~,/X. The vector O H  is therefore  equal to R 
(Fig. 7). If the diffraction condition is satisfied, H is a reciprocal lattice 
node. We have therefore the following constructiofl: we draw through O 
a line parallel to the incident direction, let lO = U~., then draw a sphere 
centered in [ with radius  1/A. If it passes through another reciprocal 
lattice node H, there is a reflected beam parallel to IH. 

We may notice in the triangle IOH that O H ~ 2 = / H x s i n  0, calling 0 
the angle between I 0  o r / H  with the bissectrix of OH-T, that is with the 
trace of the set of direct lattice planes associated with the node H. 

We know from (2.8) that 

n 
O H = -  

d 

where d is the lattice spacing of the direct lattice planes and n the order 
of H along the reciprocal lattice row OH. We find thus that: 

n sin 0 

2d ~t 

which is of course Bragg's law. 

A reciprocal lattice node may thus be associated with each Bragg reflection. 

This result can also be obtained directly through the properties of 
Fourier transforms. The  basic assumption of the geometrical theory of 
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diffraction is that the amplitude of the incident wave at each scatterer is 
constant. This assumption is acceptable if the interaction between the 
incident wave and the scatterers is small enough. The  total diffracted 
amplitude in a given direction is therefore simply equal to the sum of the 
amplitudes scattered in this direction by every scatterer, taking into 
account their phase relationships. It is equal to: 

A ~ ~ ~ "r'e-2~'i~rd.r e = ojjjo   (5.4) 

using (5.1) and (5.2). Ae is the amplitude diffracted by one scatterer and 
o(r) the density of scatterers electrons if we consider X-ray diffraction for 
instance. The integral is extended over the volume of the crystal. We shall 
assume it here to be infinite. Expression (5.4) shows that the distribution 
of diffracted amplitudes is the Fourier transform of the electron density 
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0(r). If the diffracting medium is crystalline, it is triply periodic. The 
Fourier transform of 0(r) is then a distribution of Dirac masses at each 
reciprocal lattice node. The weight associated with each one of them is 
equal to the structure factor: 

unit cell (5.5) 

= Y. f~e-2~(hxi  + ky~ + Izj) 
i 

where f/ is the form factor of a t o m /  and N, YJ, zi its numerical coordinates 
in the unit cell. 
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