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Physics 121 - Electricity and Magnetism

Lecture 12 - Inductance, RL Circuits  
Y&F Chapter 30, Sect 1 - 4

• Inductors and Inductance

• Self-Inductance

• RL Circuits – Current Growth

• RL Circuits – Current Decay

• Energy Stored in a Magnetic Field

• Energy Density of a Magnetic Field

• Mutual Inductance

• Summary
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Induction: basics 

dt

d
NsdE B

−== 
• A changing magnetic flux 

creates a non-conservative

electric field.

  
dt

d
N  B

ind


−=E

• Faraday’s Law: A changing magnetic 
flux through a coil of wire induces an 
EMF in the wire, proportional to the 
number of turns, N.

Bind & iind oppose changes in B

• Lenz’s Law: The current driven by an induced EMF creates 
an induced magnetic field that opposes the flux change.

FvvFP ==


BlviP        −==

• Induction and energy transfer: The forces on the loop 
oppose the motion of the loop, and the power required to 
sustain motion provides electrical power to the loop.

• Transformer principle: changing current i1 in primary 
induces EMF and current i2 in secondary coil.

dAn̂BAdBd B 





=
B


n̂

• Magnetic Flux:
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Changing magnetic flux induces electric fields: 
trivial transformer

A thin solenoid, cross section A, n turns/unit length

• zero field outside solenoid

• inside solenoid:

B

i, di/dt

i, di/dt iind

conducting loop, 

resistance R        in    B 0=

inA  A B    0==
Flux through a 

conducting loop:

Current i varies with time, so flux varies and an EMF is 

induced in loop “A”:

       
dt

di
nA 

dt

d
    0ind −=


−=E

Current  induced in the loop is:        
R

 
i ind
ind

E
=

If di/dt is positive, B is growing, then Bind opposes change and iind is Counter-clockwise

What makes the current iind flow?

• B = 0 there so it’s not the Lorentz force

• An induced electric field Eind along the loop causes current to flow
• It is caused directly by dF/dt

• Electric field lines are loops that don’t terminate on charge.

• E-field is there even without the conductor (no current flowing)

• E-field is non-conservative (not electrostatic) as the line integral

around a closed path is  not zero

   
dt

d
  sdE          B

loop indind


−== 


E Generalized Faradays’ Law

Path must be constant
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In the right figure, dB/dt = constant, find the 

expression for the magnitude E of the 

induced electric field at points within and 

outside the magnetic field.

Due to symmetry:

For r < R: 

So 

For r > R:

So

The magnitude of induced electric field grows 
linearly with r, then falls off as 1/r for 
r>R

Example: Find the induced electric field

  ===
→→

)r(EdsEEdsdsE 2

dt

dBr
E

2
=

)r(BBAB
2==

dt

dB
r)r2(E 2=

dt

dB

r

R
E

2

2

=
dt

dB
R)r2(E 2=

)R(BBAB
2==

   
dt

d
  sdE        B

loop
indind


−== 


E   isdB  enc = 0





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Self-Inductance: Analogous to inertia
N

DISTINGUISH:

•Mutual-induction: di1/dt in “transformer primary” also induces EMF and current 
i2  in “linked” secondary coil (transformer principle).

•Self-induction in a single Coil: di/dt produces “back EMF” due to Lenz & 
Faraday Laws: ind opposes d/dt due to current change.  Eind opposes di/dt.

ANY magnetic flux change is resisted.  
Changing current in a single coil induces a “back EMF” 
Eind in the same coil opposing the current change, an 
induced current iind, and a consistent induced field Bind.

• Changing current in a single coil causes magnetic field and flux created by this

current to change in the same sense
• Flux Change induces flux opposing the change, along with opposing EMF and current. 
• This back emf limits the rate of current (flux) change in the circuit

• For increasing current, 
back EMF limits the 
rate of increase

• For decreasing current, 
back EMF sustains the 
current

Inductance measures oppositon to the rate of change of current
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Definition of Self-inductance

Joseph Henry

1797 – 1878

Self-inductance depends only on coil geometry

It measures energy stored in the B field

Recall capacitance:  depends only on geometry

It measures energy stored in the E field V

Q
C 

SI unit of

inductance: 

currentunit   

flux  linked
L 

i 

 N
L B
self-inductance

number of turns flux through one turn depends 
on current & all N turns

cancels current dependence in flux above

.sec)(   / Ampere Volt.sec1               

 / Ampere Weber1 Ampere /
2

T.m 1H.  1Henry 

=

=1

Why choose 

this definition?

Cross-multiply

B NLi =

Take time derivative

L
B -  

dt

d
 N

dt

di
L E=


=

dt

di
L L −E

Another form of Faraday’s Law!

• L contains all the geometry
• EL is the “back EMF”
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Example: Find the Self-Inductance of a solenoid

2

A
Nμ

L 2

0=
Note: Inductance per unit length 

has same dimensions as m0 m

H
    

.A

m.T
][ ==0

Check: Same L if you start with Faraday’s Law for FB:

dt

dΦ
N B

ind −=E for solenoid use          above
B

dt

di
L

dt

diANμ

dt

diNA
μ N.

2

0
0ind −

−
=








−=


E

inμB 0=
Lengthunit 

turns #
    

N
    n =




NA
iμ    BA    Φ 0B =

+

-
RL

L

Field:

Flux in just

one turn:

Apply definition of self-inductance:

• Depends on geometry
only, like capacitance.

• Proportional to N2 !
  Vnμ

AN
 μ   

i

NΦ
  L 2

0

2

0
B ==



▪ N turns 

▪ Area  A 

▪ Length l

▪ Volume V = Al

where

ALL N turns 
contribute to self-
flux through ONE 

turn
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Example:  calculate self-inductance L for an ideal solenoid

l

m 0.2    length   m, 0.5r  radius   turns,   1000N === 

Henrys-milli 49.4  Henrys
3

1049.4L  

0.2

2
)

2
10(5π

6
10

7
104πA

2
N0μ

L      

 =
−

=

−


−


==




Ideal inductor  
(abstraction):

solenoid) (ideal  inside  in0μB  

outside   0B  

battery)  ideal  (recall  0  r  resistance  Internal  

=•

=•

=•

Non-ideal inductors have 
internal resistance:

L

Vind

r

currentondependsirofDirection•

rresistancewithwirealikebehavesInductor

0
L

inducedthen,constant isicurrent  If =• E

di/dtondepends
L

ofDirection• E

voltagemeasuredirLVIND =−=• E
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12 – 1:  Which statement describes the current through the inductor 

below, if the induced EMF is as shown?

A. Rightward and constant.

B. Leftward and constant.

C. Rightward and increasing.

D. Leftward and decreasing.

E. Leftward and increasing.

Induced EMF in an Inductor

→L

dt

di
L L −E
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What if  CURRENT i  is constant?

Lenz’s Law applied to Back EMF          

If i is increasing: 0
dt

BdΦ


 EL opposes increase in i

Power is being stored in B field of inductor

If i is decreasing: 0
dt

BdΦ


 EL opposes decrease in i

Power is being tapped from B field of inductor

EL

-

+

i

Di

+

-

EL

i

Di
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Example:  Current I increases uniformly from 0 to 1 A. in
0.1 seconds.  Find the induced voltage (back 
EMF) across a 50 mH (milli-Henry) inductance.

direction  positive  defines   i

right the  toward  and            

increasing  is  icurrent  that   means  0 
dt

di


Volts  0.5 
sec

Amp
10mH 50L −=−=E

Negative result 
means that induced 
EMF is opposed to 
both di/dt and i.

i

+

i

-
EL

 
dt

di
LL −=E

sec

Amp
 10

sec  0.1

Amp  1

Δt

Δi
 =

+
=Apply: Substitute:
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• Inductors, sometimes called “coils”, are common circuit components.
• Insulated wire is wrapped around a core.
• They are mainly used in AC filters and tuned (resonant) circuits.
Analysis of series RL circuits:

• A battery with EMF E drives a current around the loop, producing a back EMF 

EL in the inductor.

• Derive circuit equations: apply Kirchoff’s loop rule, convert to differential 
equations (as for RC circuits) and solve.

Inductors in Circuits—The RL Circuit

New rule: when traversing an inductor in the same 

direction as the assumed current, insert: 
dt

di
L L −E
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Series LR circuits 

+

-

E

i

i

L

R
a

b
EL

• Inductance & resistance + EMF
• Find time dependent behavior
• Use Loop Rule & Junction Rule
• Treat EL as an EMF along current

Given E, R, L:  Find i, EL, UL for inductor as functions of time

Growth phase, switch 
to “a”. Loop equation:

• i through R is clockwise and growing:    EL  opposes  E
• At t = 0, rapidly growing current but i = 0, EL= E

L acts like a broken wire

• As t → infinity, large stable current, di/dt → 0  

Back EMF EL→ 0,    i → E  / R, 

L acts like an ordinary wire

• Energy is stored in L & dissipated in R

0    
dt

di
L    iR    =−−E

Decay phase, switch 
to “b”, exclude E,  
Loop equation:

0    
dt

di
L    iR  =−−

• Energy stored in L now dissipated in R

• Current  through  R is still clockwise, but collapsing

• EL now acts like a battery maintaining current 

• Current  i  at t = 0 equals  E / R

• Current → 0 as t → infinity – energy depleted

dt

di
L L −E ALWAYS
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LR circuit: decay phase solution

i

L

R

b EL

+

-• After growth phase equilibrium, switch from a to b, battery out

• Current i0 = E / R initially still flowing CW through R

• Inductance tries to maintain current using stored energy

• Polarity of  EL  reverses versus growth.  Eventually EL→ 0

0      iR- =+ LELoop Equation is :

     
dt

di
L   )t( −=LESubstitute :

i 
L

R
     

dt

di
−=

Circuit Equation: di/dt <0
during decay,
opposite to 

current

Current decays exponentially:

t 2t 3t

i0

i

t

370
1 .e =−

• First order differential equation with simple exponential solution

• At t = 0: large current implies large di / dt, so EL is large

• As t → infinity: current stabilizes, di / dt and current i both → 0

constant  time  inductive      L

0
/t

L/R
R

i     ei)t(i L



t−

t

=
E

0

Back EMF EL and VR decay exponentially:


t

−=
t− L/t

L

e
Rdt

di E

iR V

 e  

LR

/t

L
L

−=−=

+=
t−

E

EE

ttancons  time  capacitive

RC/t

RC
eC)t(Q         


= −E

Compare to RC circuit, decay
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LR circuit: growth phase solution

0      iR- =+ LEELoop Equation is :

     
dt

di
L   )t( L −=ESubstitute : R

    
dt

di

R

L
    i

E
=+

Circuit Equation:

Current starts from zero, grows as a saturating exponential.

• First order differential equation again - saturating exponential solutions

• As t → infinity, di / dt approaches zero, current stabilizes at iinf = E / R

• At t = 0: current is small, di / dt is large, back EMF opposes battery.

( )
constant  time  inductive      

L

inf
/t

inf

L/R
R

i     e i)t(i L



t−

t

−=
E

1

t 2t 3t

iinf

i

t

6301
1 .e =− −

• i = 0 at t = 0 in above equation → di/dt = E/L  

fastest rate of change, largest back EMF

Back EMF EL decays exponentially

LL /t
L

/t

L

e     e
 Rdt

di t−t−
−=

t
= EE
E

Voltage drop across resistor VR= -iR

( )
ttancons  time  capacitive

RC/t

RC
eC)t(Q   


−= −

1E

Compare to RC circuit, charging
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Example: For growth phase find back EMF EL as a function of time

After a very long (infinite) time:
▪ Current stabilizes, back EMF=0

▪ L acts like an ordinary wire at t = infinity

5A  
R

   i ==
E

Use growth phase solution  )e(1
R

i(t) L/t t−
−=

E

0)e(1
R

0)i(t 0
 =−==

E

S

-

1ΩR =

0.1HL =5V=E

+

sec  .0
1Ω

0.1H

R

L

L
1===t

i

EL

Back EMF is ~ to rate of change of current

▪ Back EMF EL equals the battery potential
causing current i to be 0  at t = 0

▪ iR drop across R  =  0

▪ L acts like a broken wire at t = 0

R

L
       e

(-)(-)

Rdt

di
  Lwhere

/t

L

  :Derivative L =t
t

=
t−E

EEE −==−=−=
t−

L
/t

L    :0t     At ;e
dt

di
L L E

t

0 V0.37-

-E

EL

At t = 0: current = 0
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12 – 2: The three loops below have identical inductors, resistors, 

and batteries.  Rank them in terms of current through the battery 

just after the switch is closed, greatest first.

A.I, II, III.

B.II, I, III.

C.III, I, II.

D.III, II, I.

E.II, III, I.

Current through the battery - 1

I.                    II.                    III.

( ) constant  time  inductive    eq  L
eq

inf
/t

inf L/R        
R

i     e i)t(i L 
t− t−=

E
1

Hint: what kind of wire does L act like?
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12 – 3:  The three loops below have identical inductors, resistors, 

and batteries.  Rank them in terms of current through the battery a 

long time after the switch is closed, greatest first.

A. I, II, III.

B. II, I, III.

C. III, I, II.

D. III, II, I.

E. II, III, I.

Current through the battery - 2

I.                    II.                    III.

( ) constant  time  inductive    eq  L
eq

inf
/t

inf L/R        
R

i     e i)t(i L 
t− t−=

E
1

Hint: what kind of wire does L act like?
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Summarizing RL circuits growth phase

)e(
R

i L/Rt−−=


1Inductor acts like a wire.
R

i


=

Inductor acts like 
an open circuit.

• When t is large:

• When t is small (zero), i = 0.

L/RtL/Rt
RL

e)e(VV  −− + −=−−=−−= 1

• The voltage across the inductor is

)e(iRV L/Rt
R

−−−=−=  1

• The voltage across the resistor is

RCC =t Capacitive time constantCompare:

R/i =

R

L
L =t Inductive time constant

• The current starts from zero and 
increases up to a maximum of            
with a time constant given by
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V
R

 (
V

)

Summarizing RL circuits decay phase

0=−−
dt

di
LiR

0=+
dt

di
LiR

The switch is thrown from a to b

• Kirchoff’s Loop Rule for growth 

was:

• Now it is:

L/RtL/Rt
L

ee
dt

d

R
L

dt

di
LV  −− 


−=+=+=

• Voltage across inductor:

L/Rte
R

i −
=

• The current decays exponentially:

L/Rt
R

eiRV  −−=−=

• Voltage across resistor also decays:



Copyright R. Janow – Fall 2013

Energy stored in inductors
Recall: Capacitors store energy in their electric fields

energy  potential  ticelectrostaE   U 

2
2

CV
C

Q
  U

2

1

2

1
E =

density  energy  ticelectrostaE   u 

2
0E

U
  u

2

1

Volume

E
E =

Inductors also store energy, but in their magnetic fields

Magnetic PE Derivation – consider power into or from inductor

2

2

1
LiidiLdUU         

dt

di
Lii

dt

dU
Power BBL

B ==== E

• UB grows as current increases, absorbing energy

• When current is stable, UB and uB are constant

• UB diminishes when current decreases.  It powers

the persistent EMF during the decay phase for the inductor 

energy  potential  magneticB   U  density  energy  magneticB   u 

2LiU
2

1
B =

0

2


=

2Volume

B
B

BU
  u

derived 
using 

solenoid

derived 
using p-p 
capacitor
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Sample problem:  energy storage in magnetic field
of an inductor during growth phase

a)  At equilibrium (infinite time) how much energy is stored in the coil?

  A34.3
0.35

12
     wire)a like acts (Coil   

R
i ===


E

2
(34.3) x

3
10 x 53 x

2

12
iL

2

1
U

−
=


=



  J  31U  =


L = 53 
mHE = 12 V

Ω 0.35R =

b) How long (t1/2) does it take to store half  of this energy?

)
/t 

e(1i      
2

i
   i L1/2

1/2
t−

−==

2
2

1

2

221 11 /
/t

e L/ −==
t−

−

22121






===

i
iiL  Li          UU    :t  At

/
        

2
  

2

1

2

12
/2

1

2

1

B1/2

take natural log of both sides

  .)/ln(-  /t L t=−t= 2311121 2
sec. 0.15    

0.35 / 10 x 53 R  / L  -3
L
=

=t
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Mutual Inductance
• Example:  a pair of co-axial coils

• di/dt in the first coil induces current in the 

second coil, in addition to self-induced effects.   

• M21 depends on geometry only, as did L and C 

• Changing current in primary (i1) creates varying

flux through coil 2 → induced EMF in coil 2

cross-multiply

21 Ni M = 2121

time derivative

dt

d
 N

dt

di
M 21

= 2
1

21

dt

di
M 1

212 −E

Another form of Faraday’s Law!

• M21 contains all the
geometry

• E2 is EMF” induced 
in 2 by 1

The smaller coil radius determines how much flux is linked, so…..

MMM = 2112
dt

di
M 2

121 −E proof not obvious

1

2
21

i 

 N
M 21

mutual 
inductance

number of turns
in coil 2

flux through one turn 
of coil 2 due to all N1

turns of coil 1
current in coil 1

Definition:
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Calculating the mutual inductance M

uniform)   (assume 

1

     
R

Ni
      

center near   1  loop  inside  Field    B

1

110

2


=



Let coil 1 (outer) be a short loop of 

N1 turns,  not a long Solenoid

) 2  coil  in  loop  each (for
2
2

1

110
2121     R

2R

Niμ
ABΦ ==

Flux through Loop 2 – depends on area A2 & B1

large coil 1  

N1 turns

radius R1

(primary)

small coil 2  

N2 turns

radius R2

(secondary)

If current in Loop 1 is changing:

dt

di
 M 

dt

di
 

2R

RNNμ

dt

dΦ
N     1

21
1

1

21021
2 2 loop  in  voltage  induced2 −


−=−=

2
2E

    R
2R

NNμ
M M     2

2
1

10
21 = 2 smaller radius (R2)

determines the linkage

2

121

1

212
21

1

212
21

1
212

i

ΦN

i

ΦN
MM        

     
i

ΦN
M           

dt

di
M -  

===

==ESummarizing

results for mutual 

inductance:



Copyright R. Janow – Fall 2013

Summary: Lecture 12  Chapter   30 – Induction II – LR Circuits



Copyright R. Janow – Fall 2013


