Physics 121 - Electricity and Magnetism
Lecture 12 - Inductance, RL Circuits
Y&F Chapter 30, Sect1 -4

e Inductors and Inductance

e Self-Inductance

e RL Circuits - Current Growth

e RL Circuits - Current Decay

e Energy Stored in a Magnetic Field
e Energy Density of a Magnetic Field
¢ Mutual Inductance

e Summary

Copyright R. Janow — Fall 2013



Induction: basics

Magnetic Flux: d(I)B = é Od/& — é sNdA
Faraday’s Law: A changing magnetic dd
flux through a coil of wire induces an Eng =— 7B

EMF in the wire, proportional to the
number of turns, N.

Lenz’s Law: The current driven by an induced EMF creates
an induced magnetic field that opposes the flux change.

Bing & 1, OPPOSe changes in @g

Induction and energy transfer: The forces on the loop

oppose the motion of the loop, and the power required to

sustain motion provides electrical power to the loop.

—

P=F.v=Fv P=ig €=—Blv

Transformer principle: changing current i, in primary
induces EMF and current i, in secondary coil.

A changing magnetic flux

creates a non-conservative €= Ié.dé —_N—B

electric field.

dt
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Changing magnetic flux induces electric fields:

trivial transformer
A thin solenoid, cross section A, n turns/unit length conducting loop,

« zero field outside solenoid . : I, di/dt
B = N resistance R )
* Inside solenoid: “0'

Flux through a _ _ )
conducting loop: ® = BA= HolnA
Current i varies with time, so flux varies and an EMF is
induced in loop “A”:

dd di

. —_ — = nA_
&nd at HonA

Current induced in the loop is: iind =

é}nd
R

If di/dt is positive, B is growing, then B,,, opposes change and i;,4 is Counter-clockwise

What makes the current i, flow?

- B =0 there soit’s not the Lorentz force

* Aninduced electric field E;,4along the loop causes current to flow

* |tis caused directly by dF/dt

» Electric field lines are loops that don’t terminate on charge.

« E-field is there even without the conductor (no current flowing)

- E-field is non-conservative (not electrostatic) as the line integral
around a closed path is not zero

- dt Path must be constant

. do i '
s &g = ﬁoopEindodS B Generalized Faradays' Law }L




Example: Find the induced electric field

&na = | Ej\q o ds =—d(i8 §B°d§=l~l0ienc
oop

In the right figure, dB/dt = constant, find the
expression for the magnitude E of the
Induced electric field at points within and
outside the magnetic field.

. - -
Due to symmetry: §E-ds =§Eds =E§ds = E(2nr)

Forr<R:  ®g=BA=B(nr?) r dB

SO E(271:r)=11:r2CCII—It3 2 dt

—~
jop]

Forr>R: @z =BA=B(rR?

2
E(ZTCI’)—TCR E or dt

E(mV/m)
=N

[N

The magnitude of induced electric field grows
linearly with r, then falls off as 1/r for I
r>R
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Self-Inductance: Analogous to inertia
ANY magnetic flux change is resisted.

B — N —
Changing current in a single coil induces a "back EMF” L )
Eng in the same coil opposing the current change, an ¢| Y
induced current i, 4, and a consistent induced field B, .
DISTINGUISH:

*Mutual-induction: di;/dt in "“transformer primary” also induces EMF and current
i, in “linked" secondary coil (fransformer principle).

-Self -induction in a single Coil: di/dt produces "back EMF" due to Lenz &
Faraday Laws: @, opposes d®/dt due to current change. &4 opposes di/dt.

* Changing current in a single coil causes magnetic field and flux created by this
current to change in the same sense

* Flux Change induces flux opposing the change, along with opposing EMF and current.
+ This back emf limits the rate of current (flux) change in the circuit

Lenz’s law emf
[
__~1 |_+_ _

Lenz’s law emf
I
|

_ s
* For increasing current, - For decreasing current,
back EMF limits the

back EMF sustains the
rate of increase lr 1 current | A
I increasing

I decreasing

Inductance measures oppositon to the rate of change of current




Definition of Self-inductance

Recall capacitance: depends only on geometry Co Q
It measures energy stored in the E field IR,
Self-inductance depends only on coil geometry _ linked flux Joseph Henry
It measures energy stored in the B field — unitcurrent ~ 1797-1878

number of turns

self-inductance — | =

. flux through one turn depends
N (I)B on current & all N turns

j «———cancels current dependence in flux above

_S| unit of 1Henry=1H. = 1T.m2 | Ampere = 1Weber / Ampere
inductance: =1Volt.sec / Ampere (Q.sec)
Why choose Cross-multiply Take time derivative
. NSRS | :
this definition” Li =N g Lﬂ=Nd<DB=_€L
dt dt
P ‘fl‘_ =_| ﬂ - L contains all the geometry
{ = dt| - 4is the "back EMF”

Another form of Faraday’s Law! . _rai20s



Example: Find the Self-Inductance of a solenoid

_ : N # turns
Field: B=p,jn where n = — = —
¢ unitLength
o NA ALL N turns
Flux in just ®; = BA = pgi—  coniribute fo self-
one turn: / flux through ONE
N : t
Apply definition of self-inductance: i
= N turns
2 * Depends on geometry
= Area A * L= NC.DB =M, M — Nonz V| only, like capacitance.
" Length ¢ ° | + Proportional to N2 |

= \olume V = Al

Check: Same L if you start with Faraday’s Law for Fg:

d<D
‘(:lnd =-N B

Q NA di)_-pN°A di _ d
= —

¢ dt /

for solenoid use @ g above

Note: Inductance per unit length L Na A (o] = T.m —
has same dimensions as m, I =Ho /2 Hol= A

3| T



Example: calculate self-inductance L for an ideal solenoid

N =1000 turns, radius r = 0.5m, length /=0.2m

A
~
v

2.2

2 -7 —
‘/(m MoN A 41 x 10 X106><1T><(5><10 )
|_ = =
! 0.2

. -3 -

.. L=494x%x10 Henrys =49.4milli - Henrys
Ideal inductor e Internal resistance r =0 (recall ideal battery)
(abstraction): e B=0 outside

e B=pgin inside (ideal solenoid)

Non-ideal inductors have

. ) * \[\o =§ —ir = measured voltage
internal resistance:

¢ Direction of ir depends on current

r L e Direction of & depends on di/dt
_\/\/\/\m e |f currentiisconstant theninducedEL =0
) v g Inductor behaves like a wirewith resistance r

ind
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Induced EMF in an Inductor

12 —1: Which statement describes the current through the inductor
below, if the induced EMF is as shown?

Rightward and constant.
Leftward and constant. gL —>

Rightward and increasing.
Leftward and decreasing. _\MQQJ_

Leftward and increasing.

moow2»

di

=—L—
a4 dt

Copyright R. Janow — Fall 2013



Lenz’s Law applied to Back EMF

d®g

If i is increasing: > 0

dt

. . €_opposes increase in i

Power is being stored in B field of inductor

dog

If i is decreasing: <0

dt
.. & opposes decrease in i

Power is being tapped from B field of inductor

What if CURRENT i is constant?
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Example: Current I increases uniformly from O to 1 A. in
0.1 seconds. Find the induced voltage (back
EMF) across a 50 mH (milli-Henry) inductance.

| defines positive direction

+ — - di
— >0 meansthat current i is Increasing

—@m—
: : and toward theright

di . Al +1 Amp Amp

Apply: § =-L— Substitute: = = 10
dt At 0.1 sec sec
Amp Negative result

— _05 Volt means that induced
oS EMF is opposed to
both di/dt and i.

& =-50mH- 10

SecC
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Inductors in Circuits—The RL Circuit

Inductors, sometimes called “coils”, are common circuit components.
Insulated wire is wrapped around a core.
They are mainly used in AC filters and tuned (resonant) circuits.

Analysis of series RL circuits:
A battery with EMF & drives a current around the loop, producing a back EMF
¢ in the inductor.

Derive circuit equations: apply Kirchoff's loop rule, convert to differential
equations (as for RC circuits) and solve.

New rule: when traversing an inductor in the same di
direction as the assumed current, insert:



Serie_s LR circuits

i a * Inductance & resistance + EMF

tr— R - Find time dependent behavior

_____ * Use Loop Rule & Junction Rule

S b 0 * Treat & as an EMF along current

_ T L & —

R |

— q =-L a ALWAYS
i

Given & R, L: Find i, &, U, for inductor as functions of time

i through R is clockwise and growing: & opposes &

Growth phase, switch - At t =0, rapidly growing current buti=0, &= &

to "a”. Loop equation: L acts like a broken wire
_ di « As t = infinity, large stable current, di/dt 2 0
EE—-1R-L—=0 Back EMF £ 0, i &/R,

L acts like an ordinary wire
* Energy is stored in L & dissipated in R
Decay phase, switch
to "b"”, exclude & « Energy stored in L now dissipated in R
Loop equaﬁon: » Current thrqugh R is still cI_ockyvi_se, but collapsing
] « & now acts like a battery maintaining current
: di « Current i att=0equals &/R
-IR-L—=20 « Current = 0 as t = infinity — energy depleted

t CoOpyliyrlit <. yalivw = rdil £ZuUloS



LR circuit: decay phase solution

 After growth phase equilibrium, switch from ato b, battery out

* Current iy = £/ Rinitially still flowing CW through R b L &
* Inductance tries to maintain current using stored energy N
 Polarity of & reverses versus growth. Eventually £ 0 -— P
. . . i
Loop Equation is : -iR+c‘1'_ =0 CII’Cl.JIt Equation: di/dt <0
_ di ‘ da _ R, during decay,
Substitute : & ()= —La dt L opposite to
current

 First order differential equation with simple exponential solution
« At t = 0: large current implies large di / dt, so & is large
« As t 2 infinity: current stabilizes, di / dt and current i both > 0

Current decays exponentially:

N
I(t) =1pe tim lg :E | |
T, = L/R = inductivetime constant 5
Back EMF & and V; decay exponentially: _
. =7t Compare to RC circuit, decay
ﬂ=_ie_t/ﬂ — gL =+ce Q(t)=C£e—t/RC
dt Rr VF\) = —(f’l= —IR C = capacitivetime constant




LR circuit: growth phase solution

Substitute : & ()= - L%

Loop Equationis: £-IR+¢& =0

Circuit Equation:

) Ldi_¢

+__
R dt R

 First order differential equation again - saturating exponential solutions
* As t = infinity, di/dt approaches zero, current stabilizes ati,,;=&/R
At t = 0: current is small, di / dt is large, back EMF opposes battery.

Current starts from zero, grows as a saturating exponential.

(0 =ing(1-67%) iy =

TLE L/R = inductivetime constant

E

R

«i=0att=0in above equation = di/dt = &/L
fastest rate of change, largest back EMF

Back EMF & decays exponentially

di &
dt RTL

e—t/rL —

£L=—£e4”t‘

Voltage drop across resistor V= -iR

1-e1=063

T 2T 3T

Compare to RC circuit, charging
Q(t) = cg(l— et RC)

RC = capacitivetime constant
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Example: For growth phase find back EMF & as a function of time
Use growth phase solution i(t)=§(1— e t%)

At t = O: current = O

i(t =0) =§(1-e°) =0

Back EMF is ~ to rate of change of current

Derivative d 6()() e where TL =£
dt R T
di —t/t, . _N- _
g =—-L ar - =-€e , Att=0: § =-

- Back EMF & equals the battery potential
causing current i fobe O att+ =0
- iR drop across R = O

. L acts like a broken wire at T

0

After a very long (infinite) time:
= Current stabilizes, back EMF=0

- £_5sa
R

IOO

= L acts like an ordinary wire at t = infinity copyright r. anow - Fall 2013



Current through the battery - 1

12 —2: The three loops below have identical inductors, resistors,
and batteries. Rank them in terms of current through the battery
just after the switch is closed, greatest first.

Al 1L 1L
B.II, I, I, YW "W
C.I1, 1, 1I.
D.III, 11, 1. 1 L % L %
E.I, I, 1.
S I II I11

g Hint: what kind of wire does L act like?

&F : : -t/ . _ < . . .
o, i(t) =|inf(1—e L) linf = R T_ = L/Rgq = inductivetime constant

eq
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Current through the battery - 2

12 —=3: The three loops below have identical inductors, resistors,
and batteries. Rank them in terms of current through the battery a
long time after the switch is closed, greatest first.

A
B.
C.
D
E

E-.
E
&y
F

“licke,

Hint: what kind of wire does L act like?

: : _ : &
i(t) = 'inf(l—e ”TL) linf =3
eq

T_ = L/Rgq = inductivetime constant
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Summarizing RL circuits growth phase

* When tis large: i=§ Inductor acts like a wire. i=§(1—e_R”L)
+  When tis small (zero),i=0.  Inductor acts Iilf:
an open circuit. L,
i e
« The current starts from zero and 47 L
increases up to a maximum of i=g/R
with a time constant given by

T =% Inductive time constant

] 30 M L
~ 8
Compare: 1 =RC Capacitive time constant 3 6
4
2
« Thevoltage across the resistor is 0 2 4( ;s 8
t (ms
Vg =-iR=-g(1-e Rt
10 k6
« The voltage across the inductor is S g
=g
V, =-€-V,=-€+gl-e 'ty =—ge /L I
0 2 4 6 8

t (ms)
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Summarizing RL circuits decay phase

The switch is thrown from ato b

Kirchoff’s Loop Rule for growth -
was: ¢}

: di
E-IR-L—=0
dt

Now it iIs: _ i
R+L3 0 ] L ”
dt

The current decays exponentially:

. & _ :
i="e Rt/L z
R

 \Voltage across resistor also decays: 1

_ b _ _eo a-Rt/L
VR——IR— ge

 \oltage across inductor:

V =+|_ﬂ =+|_§ie—Rt/L __g e RUL

L dt R dt

Ve (V)
o NMARO®O
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Energy stored in inductors
Recall: Capacitors store energy in their electric fields

Ug = electrostatic potential energy Ug = electrostéic energydensity
2 derived

1 1 U 1 .
b= 19 1gy? e Ve _Tger S
2 C 2 Volume 2 capacitor

Inductors also store energy, but in their magnetic fields
Magnetic PE Derivation - consider power into or from inductor

dUg I | 1,00
Power=——==¢i=Li— = Ug=|dUg=L|idi= LI
dt dt 3 =[dUg =L[idi=,
Ug = magnetic potential energy Ug = magnetic energy dgnsity
1. . U B derived
UB = —|_|2 Ug = B__ using
2 Volume ~ 2K solenoid

* Ug grows as current increases, absorbing energy
 When current is stable, Ug and ug are constant
* Ug diminishes when current decreases. It powers
the persistent EMF during the decay phase for the inductor
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Sample problem: energy storage in magnetic field
of an inductor during growth phase

a) At equilibrium (infinite time) how much energy is stored in the coil?

12

| = — (Coil actslikeawire) = —— =343 A 1
© R 0.35 4

1 1 £=12V =23
U_ ==L-i2 = =x53x10" °x(34.3)° ¥ mH

2 2 H R=035Q

‘ U =311J vV V V V
(0 0]
b) How long (t,,) does it take to store half of this energy?
_ 1 1,. 2_11 2 oy

. i . —tyo/
‘ iy = % = i (1—e” 112 L)

—tyyple V2 1 _ .
e NCRRNG 1-1/2

take natural log of both sides

_ . _ = L/R=53x102/0.35
|t1/2 = -1, In(1-1/v2)=1.231 05 e




Mutual Inductance
- -

« Example: a pair of co-axial coils

« di/dt in the first coil induces current in the A\
second coil, in addition to self-induced effects. |—
. E R
* M,, depends on geometry only, as did L and C
« Changing current in primary (i,) creates varying K@)E /
flux through coil 2 < induced EMF in coil 2 & C§€/N%§f/

number of turns
in coil 2 " No @®oqc of coil 2 due to all N, Ko7
2 ¥2]1 s
turns of coil 1 l

mutual ~ M21 =
inductance |1 <— current in coil 1 I '_'|| 0 |

[ene® |
Definition: HHH—1
flux through one turn ﬁ'ﬂ éjb>\ N

cross-multiply
o * M,; contains all the
Ma111 =N @21 ((Q» =_M dll 2gleome‘l'r'y
time derivative 21 4. dt - & is EMF” induced
\ diy _N ddyq in 2 by 1
“bat % dt Another form of Faraday’s Law!

The smaller coil radius determines how much flux is linked, so.....

di ,

&=—M,,—=2 My, =M,, =M proof not obvious
12 12 21 _

dt Copyright R. Janow — Fall 2013



Calculating the mutual inductance M

Let coil 1 (outer) be a short loop of large coil 1 small coil 2
N, turns, not along Solenoid N, turns N, turns

: . radius R, radius R,

B, = Field inside loop 1 near center (primary) (secondary)
_ BoliNg |
= (assume uniform)

2R,

Flux through Loop 2 —depends on area A, & B,
11N
P, =B/A, = Holy 17|:R% (foreach loop in coil 2)
2R
If current in Loop 1 is changing:
do NN,7tR3 di di
€2 = inducedvoltagein loop2 = —N2 21 =—“O 12 2 21 _ 21—1
dt 2R 4 dt dt
=M — HoNaN» 2 smaller radius (R,)
M1 =M= 2R, mwR2 determines the Iinkzage
Summarizing & =- |\/|21ﬂ M, = N2_¢21
results for mutual dt 1
inductance: Mo = M= No®21 _ N1 @
21 = WVI=—" =
I1 I5 ow — Fall 2013




CHAPTER 3 D SUMMARY

Summary: Lecture 12 Chapter 30 - Induction Il = LR Circuits

Mutual inductance: When a changing current i in one
circuit causes a changing magnetic flux in a second circuit,
an emf &3 is induced in the second circuit. Likewise, a
changing current i, in the second circuit induces an emf £,
in the first circuit. If the circuits are coils of wire with N,
and N5 turns, the mutual inductance M can be expressed in
terms of the average flux & g, through each turn of coil 2
caused by the current i, in coil 1, or in terms of the aver-
age flux &g, through each turn of coil 1 caused by the
current {5 in coil 2. The ST unit of mutual inductance is the
henry, abbreviated H. (See Examples 30.1 and 30.2.)

& =-M— and

Nydg

[30.4]

(30.5)

Self-inductance: A changing current i in any circuit causes
a self-induced emf £, The inductance (or self-inductance)
L depends on the geometry of the circuit and the material
surrounding it. The inductance of a coil of ¥ turns is
related to the average flux &5 through each turn caused
by the current { in the coil. An inductor is a circuit device,
usually including a coil of wire, intended to have a
substantial inductance. (See Examples 30.3 and 30.4.)

(30.71

(30.6)

Magnetic-field energy: An inductor with inductance L
carrying current / has energy U associated with the
inductor's magnetic field. The magnetic energy density
u (energy per unit volume) is proportional to the square
of the magnetic field magnitude. (See Example 30.5.)

U =3Lr*
2

= — (in vacuum)
Zpo

5 (in a material
u = — with magnetic
K permeability )

(30.9]

(30.100

(30.111

Stored energy
U=1iLe

Energy density
W = H]I.rip.[,
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R-L circuits: In a circuit containing a resistor R, an

L
inductor L, and a source of emf, the growth and decay of R 30.187 I= g— ———————
current are exponential. The time constant 7 is the time T, /—-;.—
required for the current to approach within a fraction 1 /e J{l B _|':| I oE =%
of its final value. (See Examples 30.6 and 30.7.) L | ,
[-Ccircuits: A circuit that contains inductance L and v e +0 RO
capacitance C undergoes electrical oscillations with an Lc ’ ]
angular frequency w that depends on L and C. This is anal- Jr“'"': '::? I
ogous to a mechanical harmonic oscillator, with induc- L-\ﬂﬂ_ﬂ =l . > | "
tance L analogous to mass m, the reciprocal of capacitance =
1/C to force constant &, charge g to displacement x, and ]]DI II[D
current i to velocity v,. (See Examples 30.8 and 30.9.)
L-A-C series circuits: A circuit that contains inductance, 1 B g
resistance, and capacitance undergoes damped oscilla- = c E [30.29] ] Underdamped

tions for sufficiently small resistance. The frequency w’

of damped oscillations depends on the values of L, R, and

C. As R increases, the damping increases; if R is greater
than a certain value, the behavior becomes overdamped
and no longer oscillates. (See Example 30.10.)

circuit (small R)
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