Chapter 31

Alternating Current

PowerPoint® Lectures for
University Physics, Thirteenth Edition
– Hugh D. Young and Roger A. Freedman

Lectures by Wayne Anderson

Copyright © 2012 Pearson Education Inc.
Goals for Chapter 31

• To use phasors to describe sinusoidally varying quantities

• To use reactance to describe voltage in a circuit

• To analyze an \(L-R-C \) series circuit

• To determine power in ac circuits

• To see how an \(L-R-C \) circuit responds to frequency

• To learn how transformers work
Introduction

• How does a radio tune to a particular station?

• How are ac circuits different from dc circuits?

• We shall see how resistors, capacitors, and inductors behave with a sinusoidally varying voltage source.
Phasors and alternating currents

- Follow the text discussion of alternating current and phasors using Figures 31.1 (which shows ac voltage) and 31.2 (which shows a phasor diagram) below.
Root-mean-square values

- Follow the text discussion of rectified alternating current, rms current, and rms voltage. Use Figures 31.3 (right) and 31.4 (below).

Meaning of the rms value of a sinusoidal quantity (here, ac current with $I = 3\, \text{A}$):

1. Graph current i versus time.
2. Square the instantaneous current i.
3. Take the average (mean) value of i^2.
4. Take the square root of that average.

\[i^2 = 9\, \text{A}^2 \]

\[I = 3\, \text{A} \]

\[i = I \cos \omega t \]

\[I_{\text{rms}} = \sqrt{\langle i^2 \rangle_{\text{av}}} = \frac{I}{\sqrt{2}} \]
Current in a personal computer

- Follow Example 31.1 using Figure 31.6 below.

\[i_{av}^2 = \frac{I^2}{2} \]

\[i_{rms} = 2.7 \text{ A} \]
Resistor in an ac circuit

- Ohm’s Law gives the voltage amplitude across a resistor: \(V_R = IR \).
- Figure 31.7 shows the circuit, the current and voltage as functions of time, and a phasor.

Amplitudes are in the same relationship as for a dc circuit: \(V_R = IR \).

Current is in phase with voltage: crests and troughs occur together.

Current and voltage phasors are in phase; they rotate together.
Inductor in an ac circuit

• Follow the text analysis of an inductor in an ac circuit using Figure 31.8 below. The voltage amplitude across the inductor is $V_L = I X_L$.

• Follow Example 31.2.
Capacitance in an ac circuit

- Follow the text analysis of a capacitor in an ac circuit using Figure 31.9 below. The voltage amplitude across the capacitor is $V_C = IX_C$.

(a) Circuit with ac source and capacitor

(b) Graphs of current and voltage versus time

(c) Phasor diagram

Voltage curve lags current curve by a quarter-cycle (corresponding to $\phi = -\pi/2 \text{ rad} = -90^\circ$).
A resistor and a capacitor in an ac circuit

- Follow Example 31.3, which combines a resistor and a capacitor in an ac circuit. Refer to Figure 31.10 below.

\[V_R = (1.20 \, V) \cos (2500 \, \text{rad/s}) t \]
Comparing ac circuit elements

- Table 31.1 summarizes the characteristics of a resistor, an inductor, and a capacitor in an ac circuit.

- Figure 31.11 (below) shows graphs of resistance and reactance.

Table 31.1 Circuit Elements with Alternating Current

<table>
<thead>
<tr>
<th>Circuit Element</th>
<th>Amplitude Relationship</th>
<th>Circuit Quantity</th>
<th>Phase of v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td>$V_R = IR$</td>
<td>R</td>
<td>In phase with i</td>
</tr>
<tr>
<td>Inductor</td>
<td>$V_L = IX_L$</td>
<td>$X_L = \omega L$</td>
<td>Leads i by 90°</td>
</tr>
<tr>
<td>Capacitor</td>
<td>$V_C = IX_C$</td>
<td>$X_C = 1/\omega C$</td>
<td>Lags i by 90°</td>
</tr>
</tbody>
</table>
A useful application: the loudspeaker

- The woofer (low tones) and the tweeter (high tones) are connected in parallel across the amplifier output. (See Figure 31.12 shown here.)

Graphs of rms current as functions of frequency for a given amplifier voltage

The inductor and capacitor feed low frequencies mainly to the woofer and high frequencies mainly to the tweeter.
The $L-R-C$ series circuit

- Follow the text analysis of the $L-R-C$ series circuit, including impedance and phase angle, using Figure 31.13 below.
- The voltage amplitude across an ac circuit is $V = IZ$.

(a) $L-R-C$ series circuit

(b) Phasor diagram for the case $X_L > X_C$

Source voltage phasor is the vector sum of the V_R, V_L, and V_C phasors.

Inductor voltage phasor leads current phasor by 90°.

Capacitor voltage phasor lags current phasor by 90°. It is thus always antiparallel to the V_L phasor.

All circuit elements have the same current phasor.

(c) Phasor diagram for the case $X_L < X_C$

If $X_L < X_C$, the source voltage phasor lags the current phasor, $X < 0$, and ϕ is a negative angle between 0 and $-90°$.

Resistor voltage phasor is in phase with current phasor.
An \textit{L-R-C} series circuit

- Read Problem-Solving Strategy 31.1.
- Follow Example 31.4.
- Follow Example 31.5 using Figure 31.15 at the right.
Power in ac circuits

- Follow the text discussion of power in alternating-current circuits using Figure 31.16 below.
- Note that the net energy transfer over one cycle is zero for an inductor and a capacitor.
- Follow Example 31.6 and Example 31.7.

(a) Pure resistor

For a resistor, $p = vi$ is always positive because v and i are either both positive or both negative at any instant.

(b) Pure inductor

For an inductor or capacitor, $p = vi$ is alternately positive and negative, and the average power is zero.

(c) Pure capacitor

(d) Arbitrary ac circuit

For an arbitrary combination of resistors, inductors, and capacitors, the average power is positive.

KEY: Instantaneous current, i
Instantaneous voltage across device, v
Instantaneous power input to device, p
Resonance in ac circuits

- At the *resonance angular frequency* ω_0, the inductive reactance equals the capacitive reactance and the current amplitude is greatest. (See Figure 31.18 below.)

Reactance, resistance, and impedance as functions of angular frequency

Impedance, current, and phase angle as functions of angular frequency

Impedance Z is least at the angular frequency at which $X_C = X_L$.

Current peaks at the angular frequency at which impedance is least. This is the *resonance angular frequency* ω_0.
Tuning a radio

• Follow Example 31.8 using Figure 31.20 below.
Transformers

- Power is supplied to the primary and delivered from the secondary. See Figure 31.21 at the right.

- Terminal voltages:
 \[\frac{V_2}{V_1} = \frac{N_2}{N_1} \]

- Currents in primary and secondary:
 \[V_1 I_1 = V_2 I_2 \]

The induced emf per turn is the same in both coils, so we adjust the ratio of terminal voltages by adjusting the ratio of turns:

\[\frac{V_2}{V_1} = \frac{N_2}{N_1} \]
Real transformers

- Real transformers always have some power losses, as illustrated in Figure 31.24 below.
- Follow Example 31.9.