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Electricity and Magnetism 

Lecture 13 - Physics 121   
Electromagnetic Oscillations in LC & LCR Circuits,  
              Y&F Chapter 30, Sec. 5 - 6 

Alternating Current Circuits, Y&F Chapter 31, Sec. 1 - 2 

• Summary: RC and LC circuits 

• Mechanical Harmonic Oscillator 

• LC Circuit Oscillations  

• Damped Oscillations in an LCR Circuit 

• AC Circuits, Phasors, Forced Oscillations 

• Phase Relations for Current and Voltage in Simple 
Resistive, Capacitive, Inductive Circuits.  

• Summary  
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Recap: LC and RC circuits with constant EMF -  
                                         – Time dependent effects 
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Now LCR in same circuit, time varying EMF –> New effects 
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•  External AC can drive circuit, frequency wD=2pf 

•  New behavior: Resonant Oscillation in LC Circuit  
21/
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•  Generalized Resistances: Reactances, Impedance   
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•  New behavior: Damped Oscillation in LCR Circuit  
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Recall:  Resonant mechanical oscillations 

Definition of 

an oscillating 

system: 

•   Periodic, repetitive behavior 
•  System state ( t )  =  state( t + T )  = …= state( t + NT ) 
•  T = period = time to complete one complete cycle 
•  State can mean: position and velocity, electric and magnetic fields,… 
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Substitutions can convert mechanical to LC equations: 

Energy oscillates between 100% kinetic and 100% potential: Kmax = Umax 

With solutions like this...   )tcos(x)t(x w 00

Systems that oscillate 
obey equations like this... k/m     x    
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What oscillates for a spring in SHM?  position & velocity, spring force, 

Mechanical example: Spring oscillator (simple harmonic motion) 
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Electrical Oscillations in an LC circuit, zero resistance 
a 

L C E 

+ 
b 

Charge capacitor fully to   Q0=CE  then switch to “b” 

Kirchoff loop equation:    0   - V LC E
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Peaks of current and charge are out of phase by 900  
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Details: use energy conservation to deduce oscillations 

• The total energy: 
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• To evaluate w0:  plug the first and second derivatives of the solution into the 

differential equation. 

• The resonant oscillation frequency w0  is: 

0
dt

dQ
• Either                    (no current ever flows) or:   

LC

Q

dt

Qd
 0

2

2


oscillator 
equation 



Copyright R. Janow – Fall 2013 

13 – 1:  What do you think will happen to the oscillations in a true 

LC circuit (versus  a real circuit) over a long time? 
 

A.They will stop after one complete cycle. 

B.They will continue forever. 

C.They will continue for awhile, and then suddenly stop. 

D.They will continue for awhile, but eventually die away. 

E.There is not enough information to tell what will happen. 

Oscillations Forever? 
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Potential Energy alternates between all electrostatic and 

all magnetic – two reversals per period  

C is fully charged twice each 
cycle (opposite polarity) 



Copyright R. Janow – Fall 2013 

Example:  A 4 µF capacitor is charged to E = 5.0 V, and 

then discharged through a 0.3 Henry 

inductance in an LC circuit  

Use preceding solutions with  = 0 

C L 

c) When does the first current maximum occur?    When |sin(w0t)| = 1 

Maxima of Q(t):  All energy is in E field 

Maxima of i(t): All energy is in B field 

Current maxima at T/4, 3T/4, … (2n+1)T/4 

First One: 
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Example 
a) Find the voltage across the capacitor in the circuit as a function of time. 

      L = 30 mH,   C = 100 mF 

      The capacitor is charged to Q0 = 0.001 Coul.  at time t = 0. 
 

      The resonant frequency is: 

 

 

        The voltage across the capacitor has the same  

            time dependence as the charge: 

 

 

       At time t = 0, Q = Q0,  so choose phase angle   = 0.       
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b) What is the expression for the current in the circuit?   The current is:  

 

 

c)   How long until the capacitor charge is reversed?   That happens every ½ 

period, given by:  
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13 – 2:  The expressions below could be used to represent the 

charge on a capacitor in an LC circuit.  Which one has the greatest 

maximum current magnitude? 

 

A.  Q(t) = 2 sin(5t) 

B.  Q(t) = 2 cos(4t) 

C.  Q(t) = 2 cos(4t+p/2)  

D.  Q(t) = 2 sin(2t) 

E.  Q(t) = 4 cos(2t)   

Which Current is Greatest? 

  
dt
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i  )tcos(Q)t(Q 00 w



Copyright R. Janow – Fall 2013 

13 – 3:  The three LC circuits below have identical inductors and 

capacitors.  Order the circuits according to their oscillation 

frequency in ascending order. 

 

A.  I, II, III. 

B.  II, I, III. 

C.  III, I, II. 

D.  III, II, I. 

E.  II, III, I. 

Time needed to discharge the capacitor in LC circuit 

T
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I.                 II.                    III. 
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LCR circuits: Add series resistance 
          Circuits still oscillate but oscillation is damped 
Charge capacitor fully to  Q0=CE   then switch to “b” 

Stored energy decays with time due to resistance 
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Oscillator equation results, but 

with damping (decay) term 
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13 – 4: How does the resonant frequency w0 for an ideal LC circuit 

(no resistance) compare with w’ for an under-damped circuit whose 

resistance cannot be ignored? 

 

A. The resonant frequency for the non-ideal, damped circuit is higher than 

for the ideal one (w’ > w0). 
 

B. The resonant frequency for the damped circuit is lower than for the ideal 

one (w’ < w0). 
 

C. The resistance in the circuit does not affect the resonant frequency—
they are the same (w’ = w0). 

 

D. The damped circuit has an imaginary value of w’. 

Resonant frequency with damping 

  2/122

0   L) 2(R / ω   ω' 
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Alternating Current (AC) - EMF 

• AC is easier to transmit than DC 

• AC transmission voltage can be changed by using a transformer. 

• Commercial electric power (home or office) is AC, not DC. 

• The U.S., the AC frequency is 60 Hz.  Most other countries use 50 Hz. 

• Sketch: a crude AC generator.   

• EMF appears in a rotating a coil of wire in a 

magnetic field (Faraday’s Law) 

• Slip rings and brushes allow the EMF to be 

taken off the coil without twisting the wires.  

• Generators convert mechanical energy to 

electrical energy.  Power to rotate the coil 

can come from a water or steam turbine, 

windmill, or turbojet engine. 
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Represent outputs as 
sinusoidal functions: 
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External AC EMF       driving a circuit 

External, sinusoidal, instantaneous EMF applied to load: 

 t )(ωsin(t ) Dmax EE  amplitudemax   E

 )  Φ t  ( ω sin   II( t )   Dmax 

Current in load flows with same frequency wD  ...but may be retarded or 

advanced (relative to E) by “phase angle” F (due to inertia L and stiffness 1/C) 

Current has the same amplitude and phase everywhere in a branch 

(t)E
load 

I(t)

)t(    ( t )
load

  load  the  across  potential  The V E

R 

L 

C E

Example: Series LCR Circuit 

Everything oscillates at driving frequency wD  

F  is zero at resonance – circuit acts purely resistively. 

At “resonance”: 1/LC ω  ω 0D 

Otherwise  F is + or – (current leads or lags applied EMF) 

  ωD  the driving frequency  

  ωD  resonant frequency w0, in general 
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Instantaneous, peak, average, and RMS quantities for AC circuits 

 )  Φ t  ( ω sin   ii( t )   
Dmax 

 t )(ωsin(t ) Dmax EE 

Instantaneous voltages and currents: 

• depend on time through argument: wt 
• periodic, repetitive, oscillatory 
• possibly advanced or retarded relative to each other by phase angles 
• represented by rotating “phasors” – see below 

Peak voltage and current amplitudes are just the coefficients out front 

  i max maxE
Simple time averages of periodic quantities are zero (and useless). 

• Example: Integrate over a whole number of periods – one  is enough (wt=2p) 
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 “RMS” averages are used the way instantaneous quantities were in DC circuits 
• “RMS” means “root, mean, squared”. 
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Phasor Picture:  Show current and potentials as    
 vectors rotating at frequency wD 

• The measured instantaneous values of i( t ) and E( t )   

   are projections of the phasors on the y-axis.   

• The lengths of the vectors are the peak amplitudes.   

“phase angle” measures when peaks pass  Φ  

and            are independent Φ t Dw
• Current is the same (phase included) everywhere 

in a single branch of any circuit. 

• EMF E(t) applied to the circuit can lead or lag the 

current by a phase angle F in the range [-p/2, +p/2]. 

Series LCR circuit: Relate internal voltage drops to phase of the current  

VR 

VC 

VL 

• Voltage across R is in phase with the current.  
• Voltage across C lags the current by 900.   
• Voltage across L leads the current by 900.  

maxI

maxE
wDt- F 

F 

 t )(ωsin(t ) Dmax EE 

 )Φ t ( ω sin iI( t )  Dmax 

x 

y 
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AC circuit, resistance only  current and voltage in phase  

VR  ( t ) ε
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t ω
D

 V
R

 I
R

 (t )V
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Voltage drop across R: 
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Kirchoff loop rule: 

Current: 
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m

DRmax
p

E

wD = 2pf = 120p          = 1/60 s.        t = /4 

(definition of resistance) 

Peak current and peak voltage are in phase in a purely 

resistive part of a circuit, rotating at the driving frequency wD 
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Capacitance-only AC circuit: current leads voltage by p/2 

0 )t( V
C

 )t(ε
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VC ( t ) 

C 
   ;t )(ωsinV C(t )C VQ(t ) DmaxCC 
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)
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 so...phase angle F   p/2  for capacitor 
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π
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V
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C
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


Current leads the voltage by p/2 in a pure 

capacitive part of a circuit (F negative) 

t ω
D

maxCV

maxCi
(t )iC

(t )VC

0
90 

Phasor Picture Capacitive Reactance 

     limiting cases 

• w  0: Infinite reactance. 

DC blocked. C acts like  

broken wire. 

• w  infinity: Reactance is 

zero.  Capacitor acts like a 

simple wire 

)R  i   V (    i  V RR recallCCmaxCmax 

Reactances are ratios of peak values 

Kirchoff loop rule: 

Charge: 

Current: 

mmaxCDmaxCc V     ; t )(ωsin V(t ) V E

Note: 

 (Ohms )

D

 
Cω

1
C


Definition: 
capacitive 
reactance 
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Inductance-only AC circuit: current lags voltage by p/2 

)tsin(i    t)(ωcos
Lω

V
t) dtωsin(

L

V
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L
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so...phase angle F   p/2  for inductor 

Kirchoff loop rule: 

maxLmDmL V     ; t )(ωsin (t ) V  EE

Faraday Law:  

Current: 

Note: 

LmaxLmaxL i   V 

Reactances are ratios of peak values 
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L
maxL 


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Current lags the voltage by p/2 in a pure 

inductive part of a circuit (F positive) 

Inductive Reactance 

      limiting cases 

• w  0: Zero reactance. 

  Inductance acts like a wire. 

• w  infinity: Infinite reactance. 

  Inductance acts like a broken 

  wire. 
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0
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ω t
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Phasor Picture 

)DL   (OhmsL  ω   
Definition: 
inductive 
reactance 
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Current & voltage phases in pure R, C, and L circuits 

• Apply sinusoidal voltage  E (t) = Emsin(wDt) 

• For pure R, L, or C loads, phase angles are 0, p/2, -p/2 

• Reactance” means ratio of peak voltage to peak current (generalized resistances). 

VR& iR in phase 

 Resistance 

Ri/V Rmax   
C

1i/V
D

CCmax w
 Li/V DLLmax w

VL leads iL by p/2 

Inductive Reactance 

VC lags iC by p/2 

Capacitive Reactance 

Current is the same everywhere in a single branch (including phase)  
Phases of voltages in elements are referenced to the current phasor 
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Series LCR circuit driven by an external AC voltage 

im Em 
F 

wDt wDt-F 

R 

L 

C 

E 

VR 

VC 

VL 

Apply EMF: 

)tsin()t( Dmax w EE wD is the driving frequency 

The current i(t) is the same everywhere in the circuit 

 

• Same frequency dependance as E (t) but... 

• Current leads or lags E (t) by a constant phase angle F 

• Same phase for the current in E, R, L, & C   

)tsin(i)t(i Dmax Fw

Phasors all rotate CCW at frequency  wD 

• Lengths of phasors are the peak values (amplitudes)  
• The “y” components are the measured values. 

im 

Em 

F 

wDt-F 

VL 

VC 

VR 

Plot voltages in components with phases 

 relative to current phasor im : 

• VR has same phase as im 

• VC lags im by p/2 

• VL leads im by p/2 

RiV mR 

CmC XiV 

LmL XiV 

0 )t(V)t(V)t(V)t( CLR


E

0
byLlagsCCLR m 180    V  V      )VV(  V  


E

along im perpendicular to im 

Kirchoff Loop rule for potentials (measured along y) 
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Summary: Lecture 13/14  Chapter  31 -  LCR & AC Circuits, Oscillations               
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Summary:  RC and RL circuit results             


