
Copyright R. Janow – Fall 2016 
1 

 Physics 121 - Electricity and Magnetism 
 Lecture 3 - Electric Field 
  Y&F Chapter 21 Sec. 4 – 7  

• Recap & Definition of Electric Field 
• Electric Field Lines 
• Charges in External Electric Fields 
• Field due to a Point Charge 
• Field Lines for Superpositions of Charges 
• Field of an Electric Dipole 
• Electric Dipole in an External Field: Torque 

and Potential Energy  
• Method for Finding Field due to Charge 

Distributions 
– Infinite Line of Charge  
– Arc of Charge 
– Ring of Charge 
– Disc of Charge and Infinite Sheet 

• Motion of a charged paricle in an Electric Field 
- CRT example 
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Recap: Electric charge 

• Positive and negative flavors.  Like charges repel, opposites attract 
• Charge is conserved and quantized.  e = 1.6 x 10-19 Coulombs 
• Ordinary matter seeks electrical neutrality – screening 
• In conductors, charges are free to move around 

• screening and induction 
• In insulators, charges are not free to move around 

• but materials polarize 
 Coulombs Law: forces at a distance enabled by a field 

Basics: 
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Fields 

Scalar Field 
 Examples: 

• Temperature  -  T(r) 
• Pressure  - P(r) 
• Gravitational Potential energy – U(r) 
• Electrostatic potential – V(r) 
• Electrostatic potential energy – U(r) 

Vector Field 
 Examples: 

• Velocity -  v(r) 
• Gravitational field/acceleration  - g(r) 
• Electric field  – E(r) 
• Magnetic field– B(r) 
• Gradients of scalar fields 

Gravitational Field   versus     Electrostatic Field 
        force/unit charge 
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q0 is a positive “test charge” 

           force/unit mass 
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m0 is a “test mass” 
“Test” masses or charges map the direction and magnitudes of fields 

Fields “explain” forces at a distance – space altered by source 
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Field due to a charge distribution 

Test charge q0: 
•    small and positive 
•    does not affect the charge distribution 
     that produces E. 
A charge distribution creates a field: 
• Map E field by moving q0 around and  
      measuring the force F at each point  
• E(r) is a vector parallel to F(r) 
• E field exists whether or not the  
      test charge is present 
• E varies in direction and magnitude x 

y 

z 
ARBITRARY 

CHARGE  
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most often… F = Force on test charge q0 at point r  
       due to  the charge distribution 
E = External electric field at point r  
   = Force/unit charge 
SI Units: Newtons / Coulomb 
               later: V/m 

  )r(Eq)r(F   


0=
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Electrostatic Field Examples 

0q
FE



=

• Magnitude: E=F/q0 
• Direction: same as the force that acts on the 

positive test charge 
• SI unit: N/C 

Field Location Value 

Inside copper wires in household circuits 10-2 N/C 

Near a charged comb 103 N/C 

Inside a TV picture tube (CRT) 105 N/C 

Near the charged drum of a photocopier 105 N/C 

Breakdown voltage across an air gap (arcing) 3×106 N/C 

E-field at the electron’s orbit in a hydrogen atom 5×1011 N/C 

E-field on the surface of a Uranium nucleus 3×1021 N/C 
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Electric Field due to a point charge Q          
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Coulombs Law 
test charge q0 

Find the field E due to point 
charge Q as a function over 
all of space 
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• Magnitude E = KQ/r2 is constant on any spherical shell (spherical symmetry)  
• Visualize:  E field lines are radially out for +|Q|, in for -|Q| 
• Flux through any closed (spherical) shell enclosing Q is the same: 
     Φ = EA = Q.4πr2/4πε0r2 = Q/ε0        Radius cancels     

The closed (Gaussian) surface intercepts all the field lines leaving Q 

Q 

r 

E 

E 

E q0 
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Use superposition to calculate net electric field at each 
point due to a group of individual charges 
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Do the sum above  
for every test point i 

Example: for point charges   
at r1, r2….. 
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Visualization:  Electric field lines (Lines of force) 

• Map direction of an electric field line by 
moving a positive test charge around.  

• The tangent to a field line at a point 
shows the field direction there.                                                                              

• The density of lines crossing a unit area 
perpendicular to the lines measures the 
strength of the field.  Where lines are 
dense the field is strong. 

• Lines begin on positive charges (or 
infinity and end on negative charges 
(or infinity). 

• Field lines cannot cross other field lines 



Copyright R. Janow – Fall 2016 

DETAIL NEAR A POINT CHARGE 

• No conductor - just an infinitely large charge sheet 
• E approximately constant in the “near field” region (d << L) 

The field has 
uniform intensity 

& direction everywhere 
except on sheet 

NEAR A LARGE, UNIFORM SHEET OF + CHARGE 
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Field lines for a spherical shell 
 or solid sphere of charge 

Outside point:  
       Same field as point charge 
 

Inside spherical distribution at distance r from center:  
•      E = 0 for hollow shell;  
•      E = kQinside/r2  for solid sphere 

Shell Theorem Conclusions 
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Example: Find Enet at a point on the axis of a dipole  
•  Use superposition 
•  Symmetry  Enet parallel to z-axis 

DIPOLE MOMENT 
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22 /dz    r        /dz  r - and +≡−≡+

Exercise: Do these formulas 
describe E  at the point 
midway between the charges 
Ans:    E = -4p/2πε0d3 
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• Fields cancel as d  0 so E 0  
• E falls off as 1/z3 not 1/z2     
• E is negative when z is negative 
• Does “far field” E look like point charge? 

For z >> d :  point “O” is “far” 
from center of dipole 

• Limitation: z > d/2 or z < - d/2 
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Electric Field 

3-2: Put the magnitudes of the 
electric field values at points A, 
B, and C shown in the figure in 
decreasing order. 
 
      A) EC>EB>EA 

      B) EB>EC>EA 
      C) EA>EC>EB 
      D) EB>EA>EC 
      E) EA>EB>EC 
 

.C 

.A 

.B 
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A Dipole in a Uniform EXTERNAL Electric Field  
Feels torque  - Stores potential energy (See Sec 21.7) 

ASSSUME RIGID DIPOLE 

dqp


≡

Torque = Force x moment arm  
             = - 2 q E x (d/2) sin(θ)  
             =  - p E sin(θ)      
(CW, into paper as shown) 

  Exp


=τ

• |torque| = 0 at  θ = 0 or  θ = π 
• |torque| =  pE  at  θ = +/- π/2 
•  RESTORING TORQUE: τ(−θ) = τ(+θ) 

OSCILLATOR 

 EpUE


⋅−=

Potential Energy U = -W 

 )cos(pE    
d)sin(pEdU

θ−=
θθ+=θτ−= ∫∫ • U =   0    for θ = +/- π/2 

• U =  - pE for θ = 0     minimum 
• U =  + pE for θ = π      maximum 

Dipole 
Moment 
Vector 
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3-3:  In the sketch, a dipole is free to rotate in a 
uniform external electric field.  Which configuration 
has the smallest potential energy? 

E 

A B C 

D E 

3-4:  Which configuration has the largest potential 
energy? 
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Method for finding the electric field at point P - 
- given a known continuous charge distribution 

1. Find an expression for dq, the “point charge” 
within a differentially “small” chunk of the 
distribution 
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     dV   

dA  
   dl 

    dq
 ondistributi  volume  a for

ondistributi  surface  a for
ondistributi  linear  a for

2. Represent field contributions at P due to a point  
   charge dq located anyhwere in the distribution.   
   Use symmetry where possible. 
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3. Add up (integrate) the contributions dE  over the 
whole  distribution,  varying the displacement 
and direction as needed. 

       Use symmetry where possible. 
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Example: Find electric field on the axis of a charged rod 

• Rod has length L,  uniform positive charge per unit length λ, total charge Q.   
λ = Q/L. 

• Calculate electric field at point P on the axis of the rod a distance a from one 
end.   Field points along x-axis. 
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a
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a
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• Interpret Limiting cases: 
• L => 0   rod becomes point charge 
• L << a   same, L/a << 1 
• L >> a   a/L << 1,  

• Add up contributions to the field 
from all locations of dq along the 
rod (x ε [a, L + a]). 
 

  
)aL(a
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+πε
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04
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Electric field at center of an ARC of charge 

• Uniform linear charge density  λ = Q/L 
dq = λds = λRdθ 
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+θ0 −θ0 

θ 

R 

dq 

P dEp 

L 

• P on symmetry axis at center of arc 
    Net E is along y axis  need  Ey only 

• Angle θ is between –θ0 and +θ0 

• For a semi-circle, θ0 = π/2 • For a full circle, θ0 = π 
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In the plane of the arc 
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Electric field due to a straight LINE of charge 
Point P on symmetry axis, a distance y off the line 

•  uniform linear charge density:  λ = Q/L  
•  point “P” is at y on symmetry axis 
•  by symmetry, total E is along y-axis 
       x-components of dE pairs cancel  
•  solve for line segment, then let y << L 

ĵ
y

d)cos(  k Ed P,y
θθλ
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

•  “1 + tan2(θ)” cancels in numerator and denominator 
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SEE Y&F Example 
         21.10 
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0

0

0

0

θ+
θ−

θ+

θ−
θ

λ
−=θθ

λ
−= ∫ )sin(ĵ
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• For y << L (wire looks infinite)  θ0  π/2  

 )sin( ĵ
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Along –y direction 

Finite length wire 
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Electric field due to a RING of charge 
  at point P on the symmetry (z) axis 

•  Uniform linear charge density  along circumference:   λ = Q/2πR  
•  dq = λds = charge on arc segment of length ds = Rdφ 
•  P on symmetry axis     xy components of E cancel 
•  Net E  field is along z only, normal to plane of ring 

φλ=λ≡ dR   ds dq z/r )cos( =θ 22 zR r 2 +=

k̂
r

)cos( dq kdE       r̂
r

kdq Ed 2Pz,2P
θ

=→=

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r

 Rzd k Ed 3z,P
φλ

=


•  Integrate on azimuthal angle φ from 0 to 2π 

∫
π

φ
+
λ

=
2

0232 d k
]zR[ 
 Rz k E /2z,P

 integral = 2π 

disk on charge total    QR ≡λπ2

  k̂
]zR[ 

 zkQ E /2z,P 232+
=

 Ez  0 as z  0   
(see result for arc) 

Exercise: Where is Ez a maximum? 
Set dEz/dz = 0   
              Ans:  z = R/sqrt(2) 

•  Limit:  For P “far away”  use z >> R 

 
z

 kQ  E z,P 2→ Ring looks like a point charge 
if point P is very far away! 

dφ φ= dR   ds

SEE Y&F Example 
         21.9 
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Electric field due to a DISK of charge 
for point P on z (symmetry) axis 

• Uniform surface charge density on disc in x-y plane 
                             σ = Q/πR2  
• Disc is a set of rings, each of them dr wide in radius 
• P on symmetry axis     net E  field only along z 
• dq = charge on arc segment rdφ with radial extent dr  

φσσφ d dr r  dA dq     d dr r dA =≡=

z/s )cos( =θ 22 zr s 2 +=

[ ]
k̂ 
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θ
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See Y&F Ex 21.11 
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•  Integrate twice: first on azimuthal angle φ from 0 to 2π which yields a factor of 2π 
   then on ring radius r from 0 to R 

 k 
]zr[
 dr r z

4
2 E

R

/2
0

z


∫ +
=

0
232πε

πσ

[ ]  k̂ 
Rz 

z    1 
2

 E 1/2 20
disk













+
−

ε
σ

=
2











+
−

=
+ 212232

1
/2/2 ]zr[

   
dr
d

]zr[
  r  

Note Anti-
derivative 



Copyright R. Janow – Fall 2016 

Electric field due to a DISK of charge, continued 

[ ]  k̂ 
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

“near field” is constant – disk 
approximates an infinite sheet of charge 

Near-Field: z<< R: P is close to the disk.  Disk looks like infinite sheet. 
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Exact Solution: 
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Far-Field: R<< z: P is far from to the disk.  Disk looks like a point charge.  
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Infinite (i.e.”large”) uniformly charged sheet 

Non-conductor, fixed surface charge density σ 

L 
d 

Infinite sheet  d<<L  “near field”  uniform field 

sheet  charged conducting-non   infinite, for E
02ε

σ
=

Method: solve non-conducting disc of charge 
for point on z-axis  then approximate z << R  
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Motion of a Charged Particle in a Uniform Electric Field 

  EqF   


=

 amF  net


=

•Stationary charges produce E field at location  
   of charge q       
•Acceleration a is parallel or anti-parallel to E. 
•Acceleration is F/m not F/q = E 
•Acceleration is the same everywhere in uniform field  

Example:  Early CRT tube with electron gun and electrostatic deflector    

  ELECTROSTATIC     
DEFLECTOR 

PLATES  
electrons are negative so 
acceleration a and electric 
force F are in the direction 
opposite the electric field E. 

heated cathode (- pole) 
“boils off” electrons from 

the metal (thermionic 
emission) 

  FACE OF 
CRT TUBE    ELECTROSTATIC     

ACCELERATOR 
PLATES 

(electron gun controls 
intensity) 
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Motion of a Charged Particle in a Uniform Electric Field 

  EqF   


=  amF  net


=

electrons are negative so 
acceleration a and electric 
force F are in the direction 
opposite the electric field E. 

x 

∆y 

L 

vx 

∆y is the DEFLECTION of the 
electron as it crosses the field 
Acceleration has only a constant y 
component.   vx is constant, ax=0       
 

  
m
eEa   y −=

  
t

Lv   x ∆
=

Measure deflection, find ∆t via 
kinematics.  Evaluate vy & vx 

( )
  

vv v        ta  v   

 t 
m
eE   t ay   

/ 2
y

2
xyy

y
21

2
2
12

2
1

+=∆=

∆−=∆=∆

 vx yields time of flight ∆t  

Kinematics: ballistic trajectory 

Use to find e/m 
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