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Physics 121 - Electricity and Magnetism

Lecture 04 - Gauss’ Law 
Y&F Chapter 22 Sec. 1 - 5

• Flux Definition (gravitational example)
• Gaussian Surfaces
• Flux Examples
• Flux of an Electric Field
• Gauss’ Law
• Gauss’ Law Near a Dipole
• A Charged, Isolated Conductor
• Spherical Symmetry: Conducting Shell with Charge Inside
• Cylindrical Symmetry: Infinite Line of Charge
• Field near an infinite Non-Conducting Sheet of Charge
• Field near an infinite Conducting Sheet of Charge
• Conducting and Non-conducting Plate Examples
• Proof of Shell Theorem using Gauss Law
• Examples
• Summary
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Flux (symbol F) is basically a vector field magnitude x area

Define:  dFg is differential flux of gravitational field ag crossing vector area dA

scalar) (aA  n̂ a               

A  through a of flux   

g

gg

=






ag
n̂

“unit normal” 

outward and

perpendicular to

surface dA

Applies to flow of mass or fluid volume, gravitational, electric, magnetic field

Flux through a closed or open surface S:  

calculate “surface integral” of field over S

dA n̂ a    d   

S S

gS  = 


Evaluate integrand at all points on 
surface S

EXAMPLE : GRAVITATIONAL FLUX THROUGH A CLOSED 
IMAGINARY BOX (UNIFORM ACCELERATION FIELD)
• No mass inside the box

• F from each side = 0   since a.n = 0,    F from ends cancels

• TOTAL F = 0

• Example could also apply to fluid flow ag

n̂

n̂

n̂

n̂

What if a mass (flux source) is in the box?  
Can field be uniform?  Can net flux be zero.
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Gauss’ Law (Carl Friedrich Gauss (1777-1855)) uses

The flux of electric field crossing a closed surface equals the net 

charge inside the surface (times a constant).

Gaussian Surfaces:   
Closed 3D surfaces

• Field lines cross  a closed surface:

• Once (or an odd number of times)

for charges that are inside

• Twice (or an even number of times)

for charges that are outside

• Choose surface to match the 

field’s symmetry where possible

sphere

no end caps
not closed
not a GS

cylinder with 
end caps

closed 
box

Simple example: charge at center of a spherical “Gaussian surface”

   /Q R4 x 
R4

Q
S x EArea Surface  x  Field  Flux  0

2

2

0

=


===

Does this apply for non-point charges away from the center of the sphere?

Flux is a SCALAR,  Units: Nm2/C.
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Electric Flux: Integrate electric field over a surface 

Gauss’ Law:  The flux through a closed surface S depends only on 

the net enclosed charge, not on the details of S or anything else.

Flux through a closed or open surface S:  Integrate on S

 dAn̂E   d   

SS

EE  = 


To do this: evaluate integrand at 
all points on surface S

Definition:  differential flux of E crossing dA (area vector)

E
n̂

“unit normal” 

outward and

perpendicular to

surface dA

scalar) (a

through of fluxE

A  n̂ E           

A  E   










Divide up some surface S into tiny chunks 
of dA each and consider one of them

An̂A 

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 depends on the angle between the field and 

chunks of area

)EAcos( An̂E == 


>0

=0

 vectorunit   outward n̂
  An̂A


=



<0

E.n = 0 ZEROtangent to surface

E.n < 0 NEGATIVEfrom outside to inside of surface

E.n > 0 POSITIVEfrom inside to outside of surface

FLUX   ISWHEN E POINTS
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Evaluating flux through closed or open surfaces

SUM F FROM SMALL 
CHUNKS OF SURFACE A

C/2Nm  :are  of Units         scalar) (aA  n̂ E  E  


 =
areas  smallareas  small

An̂E      EE 


• What if the cube is oriented obliquely??
• How would flux differ if net charge is inside??

• Uniform E field everywhere
• Directed along x-axis
• Cube faces normal to axes
• Each side has area l2

• Field lines cut through two 
surface areas and are tangent to 
the other four surface areas

• For side 1,  = -El 2

• For side 2,  = +El 2

• For the other four sides,  = 0

• Therefore, total = 0

0
61

    i  
,i

E  = =
=

EXAMPLE: Flux through a cube
Assume:

Special case: field is constant across pieces of the surface
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Flux of a uniform electric field through a cylinder   

• Closed Gaussian surface
• Uniform E means zero

enclosed charge
• Calculate flux directly
• Symmetry axis along E
• Break into areas a, b, c

cba

c,b,a

tot          AdE  ++== 





      AE      dAE          1   )cos(  E,  n̂E cap

a cap

a −=−=−=−= 


Cap a:

      AE      dAE          1   )cos(  E,  n̂E cap

c cap

c +=+=+=+= 


Cap c:

              b    AE   , n̂E b  on   everywhere 00 =⊥=





Area b:

  0        tot =
What if E is not parallel to cylinder axis:
• Geometry is more complicated...but...
• Qinside = 0 so  = 0 still !!
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I.                                    II.

III.                                   IV.

4-1: Which of the following figures correctly shows a 
positive electric flux out of a surface element?

A.I.

B.II.

C.III.

D.IV.

E.I and III.

Flux of an Electric Field



E

A



EA



E

A



E

A
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Statement of Gauss’ Law
Let Qenc be the NET charge enclosed by a (closed) Gaussian 
surface S.  The net flux  through the surface is Qenc/0

• Does not depend on the shape of the surface.
• Charge outside the surface S can be ignored.
• Surface integral yields 0 if E = 0 everywhere on surface

Example: Derive Coulomb’s Law from Gauss’ Law 
Assume a point charge at center of a spherical Gaussian surface 

r

Qenc

dA EAdE =


radial  alw ays  areandbecausejust   alw ays is  n̂  E EdA   AdE





 
===

S 0

enc2 Q
   r4 E    dAE     

  
r 4

Q
     )r(E  

2
enc

0
= Coulomb’s Law

= 0encQ 
==

Surface

enc
Q

AdE

0





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+Q
+Q

spherically symmetric

What are the fields
on the Gaussian surfaces?

Spherical Shells of Charge

 
==

S

encQ
AdE

0






A. zero

B. -6 C./e0

C. -3 C./e0

D. +3 C./e0

E. not enough info

 
==

S

encQ
AdE

0






4-2: What is the flux through the Gaussian surface below?

Shell Theorem
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Flux through surfaces near a dipole

• Surface S1 encloses only the positive 

charge.  The field is everywhere 
outward.  Positive flux.   F = +Q/e0

• Surface S3 encloses no charges.  

Net flux through the surface is zero.  
The flux is negative at the upper 
part, and positive at the lower part, 
but these cancel.  F = 0

• Surface S4 encloses both charges.  

Zero net charge enclosed, so equal flux 
enters and leaves, zero net flux 
through the surface. F = 0

FLUX POSITIVE  
from S1

FLUX NEGATIVE  
from S2

FLUX = 0
through S4

FLUX = 0
through S3

+

-

S1

S2

S3

S4

• Equal positive (+Q) and negative (–Q) charges
• Consider Gaussian (closed) surfaces S1...S4.

• Surface S2 encloses only the negative 

charge.  The field is everywhere 
inward.  Negative flux. F = -Q/e0
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Where does net charge reside on an isolated conductor?

• Place net charge Q initially in the
interior of a conductor

• Charges are free to move, but 
can not leak off

EQF


=

• Choose Gaussian surface as shown:  E = 0 everywhere on it

• Use Gauss’ Law!

• The only place where un-screened charge can end up is on the outside 
surface of the conductor

• E at the surface is everywhere normal to it; if E had a component 
parallel to the surface, charges would move to screen it out.

0 Q     
Q

    0  AdE enc

0

enc

Surface

=


=== 





• At equilibrium E = 0 everywhere
inside a conductor

• Charge flows until E = 0 at every
interior point

E = 0
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Gauss’s Law: net charge on an isolated conductor...
...moves to the outside surface

1:  SOLID CONDUCTOR WITH 

EXCESS NET CHARGE ON IT

All net charge on a conductor
moves to the outer surface                     

• Choose Gaussian surface S just inside the surface
• E=0 at every point in the metal, including on S
• Gauss’ Law says:

S

E=0
00

0

=


==
enc

enc
S

Q    
Q

2.  HOLLOW CONDUCTOR WITH A NET CHARGE, NO CHARGE IN CAVITY

There is zero net charge on the inner
surface: all net charge is on outer surface   

S’

• Choose Gaussian surface S’ just outside the cavity
• E=0 everywhere within the metal, including S’

• Gauss’ Law says:E=0

00

0

=


==
enc

enc
'S

Q    
Q

Does the charge density have to be zero at each point on the inner surface?

 
==

Surface

enc
Q

AdE

0








Copyright R. Janow – Fall 2013

Charge inside a conducting spherical shell 

 
==

S 0

enc
S

q
AdE





• Electrically neutral shell

• Arbitrary charge distribution +Q in cavity

• Choose Gaussian surface S completely within

the conductor +

+
+

+

+

+

+

+Q
+

+

+

+

+

+ +-

-
-

- -

-

-

-

-

Gaussian 
Surface  

S

OUTSIDE:
• Choose another spherical Gaussian surface S’ outside the shell 

• Gauss Law:

  )r(Er
Qq'

enc 2

00

4=


+
=


= outward radially

0

    
r4

Q
 )r(E

2
=

Whatever the inside distribution may be, outside the shell it is shielded and the 

field looks like that of a point charge at the center

For a spherical shell, +Q outside is uniform, o/w  E inside  could not = 0

• E = 0 everywhere on S, so FS = 0 and qenc= 0

• Negative charge Qinner is induced on inner surface, 

distributed so that E = 0 in the metal, hence…

 Q    Q  0q innerenc ++==

• The shell is neutral, so +Q must appear on the outer surface

QQ inner −=
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Conducting spherical shell with charge inside

4-3: Place a charge inside a cavity in 
an isolated conductor.  Which 
statement is true?

A. E field is still zero in the cavity.

B. E field is not zero in the cavity, 
but it is zero in the conductor.

C. E field is zero outside the 
conducting sphere.

D. E field is the same as if the 
conductor were not there (i.e. 
radial outward everywhere).

E. E field is zero in the conductor, 
and negative (radially inward) 
outside the conducting sphere.

Conducting 

sphere

(neutral)

Spherical

cavity

Positive

charge

+
Q

+
+

+

+ +

 
==

S

encQ
AdE

0





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Example:  Use Gauss’ Law to find the electric field at a 
distance r from an infinitely long (thin) line of charge

• Cylindrical symmetry around z-axis

• Uniform charge per unit length l
• Every point on the infinite line has the 

identical surroundings, so….

• E is radial, by symmetry

• E has the same value  everywhere on 

any concentric cylindrical surface

• Flux through end caps = 0 

as E is perpendicular to DA

• E on cylinder is parallel to unit vector for DA

z

A




encqh =

outward radially  
0

      
r2

 )r(E   



=

 


===

S

h
rhEAdE   

0

2





• No integration needed now due to Gauss Law
• Good approximation for finite line of 

charge when  r << L, far from the ends.

Cylinder area  =  2rh
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Field Lines and Conductors

4-4:  The drawing shows three cylinders in cross-section, each 
with the same total charge.  Each has the same size cylindrical 
gaussian surface (again shown in cross-section).  Rank the 
three according to the electric field at the gaussian surface, 
greatest first.

A.I, II, III

B.III, II, I

C.All tie.

I.            II.          III.

 
==

S

encQ
AdE

0





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Use symmetry arguments where applicable

4-5:  Outside a sphere of charge the electric field is just like that of a point
charge of the same total charge, located at its center.

Outside of an infinitely long, uniformly charged conducting 
cylinder, which statement describes the electric field?

A. Like that of a point charge at the center of the cylinder.

B. Like a circular ring of charge at its center. 

C. Like an infinite line of charge along the cylinder axis.

D. Cannot tell from the information given.

E. The field equals zero

 
==

S

encQ
AdE

0





s
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• Cylindrical Gaussian Surface penetrating sheet

(rectangular OK too)

• Uniform positive charge per unit area s
• E has same value when chosen 

point moves parallel to the surface

• E points radially away from the sheet (both sides), 

• E is perpendicular to cylindrical part of surface

Flux through it = 0 

• On both end caps E is parallel to A

so   F =  + EAcap on each

capenc Aq =

    E      
02


=

00

2



=


=== 

cap

S

enc
cap

Aq
EAAdE 






• Uniform field – independent of distance from sheet
• Same as earlier result but no integration needed now
• Good approximation for finite sheet when r << L, far from edges.

Electric field near an infinite non-conducting  sheet of 
charge – using Gauss Law
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Example: Fields near parallel nonconducting sheets - 1

• Bring two “large” nonconducting sheets of charge close to each other,
• Approximate as infinite sheets
• The charge cannot move, use superposition.
• There is no screening, as there would be in a conductor.
• Each sheet produces a uniform field of magnitude:

• Left region:  Field due to the positively charged sheet is canceled by the field 
due to the negatively charged sheet.  Etot is zero.

• Right region: Same argument. Etot is zero.

• Between plates: Fields reinforce.  Etot and is twice E0 and to the right.

    E   
0

0
2


=

Oppositely Charged Plates, same |s|

+

+

+

+

0E 0E


s
-

-

-

-

-s

   E   tot 0=


   E   tot 0=


   îE E   0tot 2=


0E
0E
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Example: Fields near parallel nonconducting sheets - 2

    E   
0

0
2


=

• Now, the fields reinforce to the left and to the right of both plates.

• Between plates, the fields cancel.

• Signs are reversed for a pair or negatively charged plates

Positively Charged Plates, same s

   E   tot 0=   îE E   0tot 2−=


+

+

+

+

0E 0E


+s
+

+

+

+

+s

0E
0E

   îE E   0tot 2+=

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• Uniform charge per unit area s on one face

• Use cylindrical or rectangular Gaussian surface

• End caps just outside and just inside (E = 0) 

• E points radially away from sheet outside

otherwise current flows (!!)

• Flux through the cylindrical tube = 0 

E normal to surface 

• On left cap (inside conductor) E = 0 so F = 0

• On right cap E is parallel to DA so  F =  EAcap

s

F=EAF= 0

r

 A   q capenc =

00 


=


==

capenc
cap

Aq
EA   

    E     
0


=

• Field is twice that for a non-conducting sheet with same s
• Same enclosed charge, same total flux now “squeezed” out 

the right hand cap, not both  
• Otherwise like previous result: uniform, no r dependence, etc.

Electric field near an infinite conducting sheet of 
charge – using Gauss’ Law
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Charge on a finite sized conducting plate in isolation

• E = 0 inside the conductor

• Charge density s1 is the same on 

both faces, o/w charges will move to

make E = 0 inside 

• Cylindrical Gaussian surfaces S, S’ 

• S → charges distribute on surfaces

      E      
0

1




=

or

S S’L

S S’
L

• Same field magnitude on opposite 

sides, opposite directions

• Same field by replacing each conductor

by 2 charged non-conducting sheets alone: 

• cancellation inside conductor

• reinforcement outside
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Electric field near oppositely charged conducting plates 
(large, but not infinite)

Then bring plates close to each other.  

Free charge moves to make E = 0 within the metal.

All surface charge density ends up on inner faces, zero on outer.

(valid for infinite sheet) s+/- = +/- 2s1

S’

S

+ = 21 - = -21

S’

S’’

• Charge moves by induction to keep

E = 0 inside each conductor

• Field between plates remains uniform 

• Flux through Gaussian surface S = 0,

so - = - +

• Using either S’, qenc= 0 so E = 0 outside

• So the charge density = 0 on the outer faces,

• All the net charge density must move

to the inner surfaces

• Using either surface  S’’:

• This already counts effects of both plates

• Fields everywhere would be the same if 

charge distributions were there w/o the

conductors.

           E      
/

inside
0

1

0

2




=




=

−+

Parallel plate 
capacitor

Initially:  charge density +/- s1 on both faces of each plate (neutral)
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Proof of the Shell Theorem using Gauss’ Law 
(spherical symmetry)

• Hollow shell of charge, net charge Q

• Spherically symmetric surface charge

density  ,  radius R

• Two spherical Gaussian surfaces:

- S1 is just inside shell,  r1 < R

- S2 is outside shell, r2 > R

• qenc means charge enclosed by S1 or S2

OUTSIDE:
(on S2) 00

2
2
22

2

4


=


=== 
Qq

ErAdE 

S

enc





R   r for2 2
   

r

Q
  E     


=

2
204

Shell of charge acts like a 
point charge at the center 

of the sphere

INSIDE:
(on S1)

04

1
0

1
2
11 =


=== 

S

encq
ErAdE 






R   r for1 1
       E     = 0

Shell of charge creates 
zero field inside (anywhere)

At point r inside a spherically symmetric volume (radius R) of charge,
• only the shells of charge with radii smaller than r contribute as point charges
• shells with radius between r and R produce zero field inside.

S1

S2

R
r1

r2
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