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Flux (symbol F) is basically a vector field magnitude x area
Applies to flow of mass or fluid volume, gravitational, electric, magnetic field

Define: dFg4 is differential flux of gravitational field a, crossing vector area dA

Ay “unit normal” B
N _ -

outward and A®, = fluxof a, through AA
erpendicular to R =

surface dA = a,°nAA (ascalar)

Flux %'hrough aclosed or open surface S:
calculate “surface integral” of field over S
D = jdq) = jég o NdA Evaluate integrand at all points on
S S surface S

EXAMPLE : GRAVITATIONAL FLUX THROUGH A CLOSED
IMAGINARY BOX (UNIFORM ACCELERATION FIELD)

* No mass inside the box

* AF from each side =0 sincea.n =0, AFfrom ends cancels
* TOTALF=0

* Example could also apply to fluid flow v

What if a mass (flux source) is in the box?

Can field be uniform? Can net flux be zero.
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Gauss’ Law (carl Friedrich Gauss (1777-1855)) US@S

Gaussian Surfaces:
Closed 3D surfaces '
* Field lines cross a closed surface:

* Once (or an odd number of times) sphere closed cylinder with
for charges that are inside box end caps
* Twice (or an even number of times)
for charges that are outside ho end caps
« Choose surface to match the not closed
not a 6S

field’s symmetry where possible

The flux of electric field crossing a closed surface equals the net
charge inside the surface (times a constant).

Simple example: charge at center of a spherical "Gaussian surface”

Q

X 47tR* =Q /¢
4Ame R Qe

Flux = ® = Field x Surface Area=EXx S =

2

Flux is a SCALAR, Units: Nm2/C.

Does this apply for non-point charges away from the center of the sphere?
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Electric Flux: Integrate electric field over a surface

Definition: differential flux of E crossing dA (area vector)

unit ';frma' Divide up some surface S into tiny chunks

outward and of dA each and consider one of them
perpendicular to — ~

surface dA AD. = fluxofE throughAA

AA =nAA = Eo-nNAA (ascalar)

Flux through a closed or open surface S: Integrateon S

O = §dq)E — §E sNdA To do this: evaluate integrand at
all points on surface S
S S

Gauss’ Law: The flux through a closed surface S depends only on
the net enclosed charge, not on the details of S or anything else.
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A® depends on the angle between the field and
chunks of area

A® = E -NAA = EAcos(6) AA = AIAA

Gaussian _
surface N—"—

WHEN E POINTS FLUX ® IS
from inside to outside of surface E.n >0 POSITIVE A(D:O
from outside to inside of surface E.n <0 NEGATIVE
tangent to surface E.n =0 ZERO
~Jright R. Janow — Fall 2013



Evaluating flux through closed or open surfaces

Special case: field is constant across pieces of the surface

A®. = E-NAA (ascalar)

SUM AF FROM SMALL
CHUNKS OF SURFACE AA

EXAMPLE: Flux through a cube
Assume:

/Z r
%\i
® A,

Units of ® are: Nm2 /C

E = ZA(DE = ZEOﬁAA

small areas small areas

* Uniform E field everywhere
- Directed along x-axis

- Cube faces normal to axes
- Each side has area 12

Field lines cut through two
surface areas and are tangent to
the other four surface areas

For side 1, ® = -E/2
For side 2, ® = +E/2
For the other four sides, ® = 0
Therefore, ®,,,,, = 0

s (I)E = ZA(I)| =0

i=1,6

* What if the cube is oriented obliquely??

* How would flux differ if net charge is inside??
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Flux of a uniform electric field through a cyllnder

+ Closed Gaussian surface (/1 (’1";*1 an
+ Uniform_E means zero [ k / S
enclosed charge A O

+ Calculate flux directly Sy z :D-o,

- Symmetry axis along E dA

 Break into areas a, b, ¢ > = -

®,= [EcdA =0, + @, + @,
a,b,c

Capa: Eofn=-E cos(@)=-1 .. o,=-E fdA= —EAcqp
capa

Cap c: Eon=+E, cos(®)=+1 .. d. =+ E jdA = +EAcap
capc

Area b: Eon =0, ELA everywhereon b ;o Dy =0

What if E is not parallel to cylinder axis:
(), tof = 0) - Geometry is more complicated.. .but...
* Qinsige = 0 so @ = O still |l

Copyright R. Janow - Fall 2013




Flux of an Electric Field

4-1: Which of the following figures correctly shows a
positive electric flux out of a surface element?

A.L
B.II.
C.III.
D.IV. L. 11.
E.I and III. 0

AA

& A
& A
4 ’

sy
¢ /C;e,

\ ) E IV.
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Statement of Gauss’ Law

Let Q.. be the NET charge enclosed by a (closed) Gaussian
surface S. The net flux ® through the surface is Q.,./¢o

enc
O = § Qenc = &P
Surface 80

* Does not depend on the shape of the surface.
- Charge outside the surface S can be ignored.
- Surface integral yields O if E = O everywhere on surface

Example: Derive Coulomb’s Law from Gauss' Law
Assume a point charge at center of a spherical Gaussian surface

E-dA=EdA Eo dA is alwaysjust EdA becauseE and ﬁ are always radial

® = E§dA _ Exdnmr?= SQenc
€o

r
< >

~E(@) = QL”CZ Coulomb's Law
Qenc 471'.80 I
eopyrgrrere=sen oW — Fall 2013




Spherical Shells of Charge

Gaussian

Gaussian surface

surface

spherically symmetric
+(

Shell Theorem ;!

"ﬂ‘}‘ ¢=£EodA=Qe”° %

€p

What are the fields
on the Gaussian surfaces?

4-2: What is the flux through the Gaussian surface below?

Y L

@@@r Q¢ @
/. o
sy @

Zero

-6 C./e,

-3 C./e,

+3 C./e,

not enough info

S moow>»

9—5(: @10 =§E0d’&=m
5 &0
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Flux through surfaces near a dipole

- ) FLUX POSITIVE
Equal positive (+Q) and negative (-Q) charges from S,

e Consider Gaussian (closed) surfaces S1...54.

e Surface S, encloses only the positive

charge. The field is everywhere /
outward. Positive flux. F = +Q/e, -

s

FLUX = S —
e Surface S, encloses only the negative through 54 I 54
charge. The field is everywhere
inward. Negative flux. F = -Q/e,
e Surface S; encloses no charges.
Net flux through the surface is zero.
The flux is negative at the upper FLUX = O
part, and positive at the lower part, through S,
but these cancel. F =0

—""-

e Surface S, encloses both charges.
Zero net charge enclosed, so equal flux
enters and leaves, zero net flux
through the surface.F =0

FLUX NEGATIVE

from S,
Copyright R. Janow — rail 2uls
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Where does net charge reside on an isolated conductor?

e Place net charge Q initially in the
interior of a conductor
e Charges are free to move, but ‘ ‘

can not leak off -~ —
F=QE
e At equilibrium E = 0 everywhere
inside a conductor Copper
e Charge flows until E = 0 at every surface
interior point Gaussian

surface

e Choose Gaussian surface as shown: E = 0 everywhere on it
e Use Gauss’ Law! Q

D = § EodA =0 = -<enc

Surface 80

e The only place where un-screened charge can end up is on the outside
surface of the conductor

o E at the surface is everywhere normal to it; if E had a component
parallel to the surface, charges would move to screen it out.
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Gauss’s Law: net charge on an isolated conductor...

...moves to the outside surface . - Q
®= { EodA=—8nc
1: SOLID CONDUCTOR WITH c
EXCESS NET CHARGE ON IT Surtace 0

* Choose Gaussian surface S just inside the surface
- E=0 at every point in the metal, including on S

* Gauss’' Law says: Q
Copper (I) _ 0 _ enc . Q — O
surface S~ 7 T enc
Gaussian X e
0
surface §

7 ST N

All net charge on a conductor
moves to the outer surface

2. HOLLOW CONDUCTOR WITH A NET CHARGE, NO CHARGE IN CAVITY
* Choose Gaussian surface S' just outside the cavity
+ E=0 everywhere within the metal, including S’

@ Coussian Gauss' Law says: L Qenc . ~
" 4 s O, =0=—c .Q =0

surface S
Copper € 0

surface

There is zero net charge on the inner
surface: all net charge is on outer surface

Does the charge density have to be zero at each point on the inner surface?
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Charge inside a conducting spherical shell

* Electrically neutral shell S F
 Arbitrary charge distribution +Q in cavity
* Choose Gaussian surface S completely within

the conductor -~
®, = fEodA =—ene * *
S €9
« E=0-everywhereon S, so Fg =0 and q,,.=0 AN\ ] N\
* Negative charge Q,,.., IS induced on inner surface, \
distributed so that E = 0 in the metal, hence... + +
Gaussian
qenc =0 = +Q + Qinner Qinner = _Q Surface
S

* The shell is neutral, so +Q must appear on the outer surface

OUTSIDE:

» Choose another spherical Gaussian surface S’ outside the shell
* Gauss Law:

cI)=qenC =+Q=4nr2E(r) ‘ E(r)=L2 radially outward
4r

€ € 80r

Whatever the inside distribution may be, outside the shell it is shielded and the
field looks like that of a point charge at the center
For a spherical shell, +Q outside is uniform, o/w E inside could not=0

0 A LR - a e e



Conducting spherical shell with charge inside

4-3: Place a charge inside a cavity in
Spherical an isolated conductor. Which
cavity statement is true?

E field is still zero in the cavity.

E field is not zero in the cavity,
but it is zero in the conductor.

E field is zero outside the
conducting sphere.

E field is the same as if the
conductor were not there (i.e.
radial outward everywhere).

E. E field is zero in the conductor,

o 60 wp

n
n
L]
-
-
.
.
.
.
*
*
*
%
-
-
2 L3
/ 3

and negative (radially inward)
outside the conducting sphere. \
Positive é\
CondUCting Charge <\C
sphere - Q &
(neutral) f dA = —=0% /\
S
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Example: Use Gauss' Law to find the electric field at a
distance r from an infinitely long (thin) line of charge’| 2

* Cylindrical symmetry around z-axis A =0enc Py

* Uniform charge per unit length | 2y
* Every point on the infinite line has the —

identical surroundings, so.... ! ] ‘
e Eis radial, by symmetry " (’a_lr'ssr‘m
* E has the same value everywhere on I + Slz’ice
any concentric cylindrical surface + N
* Flux through end caps =0 + -
as E is perpendicular to DA I /"‘+“““\\QI‘
« E on cylinder is parallel to unit vector for DA _—k*‘_’/
B E
" (I)—iEodA—anhE_g Cylinder area = 2nrh
E(r) = A - No im‘egr'a'ri?n mf_eded now .due.'ro Gauss Law
2me,l » Good approximation for finite line of
radiallyoutward charge when r << L, far from the ends.
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Field Lines and Conductors

4-4: The drawing shows three cylinders in cross-section, each
with the same total charge. Each has the same size cylindrical
gaussian surface (again shown in cross-section). Rank the
three according to the electric field at the gaussian surface,
greatest first.

§ A Qenc
A.I, II, III !

B.III, II, I
C.All tie.

\ P . o
'- /z \\ /,/ \\\ /z \\
ke 4 A Y 4 N
8 ’ \ 4 \ / \
Q ’ \ / \ ’ \
1 \ ! \ 1 \
C* I 1 I 1 1 1
R \ 1 \ 1 1 1
S \ I} \ / \ I}
0 \ ’ \ ’ \ ’
2 \ s \ 4 \ /
<\\\ N s S R4 N ,
o S~ S~ S

46
“;
” I
| ]
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Use symmetry arguments where applicable

charge of the same total charge, located at its center.

Outside of an infinitely long, uniformly charged conducting
cylinder, which statement describes the electric field? ¢

4-5: Outside a sphere of charge the electric field is just like that of a point \
&
&

“,
lety,

Like that of a point charge at the center of the cylinder.
Like a circular ring of charge at its center.

Like an infinite line of charge along the cylinder axis.
Cannot tell from the information given.

The field equals zero

moowp
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Electric field near an infinite non-conducting sheet of

charge - using Gauss Law

* Cylindrical Gaussian Surface penetrating sheet

(rectangular OK too)
* Uniform positive charge per unit area s
* E has same value when chosen
point moves parallel to the surface

« E points radially away from the sheet (both sides),
« E is perpendicular to cylindrical part of surface

Flux through it =0

* On both end caps E is parallel to A

Qenc = OAcap

so F = +EA, oneach
cA
= fEcdA = 2EA,, = enc - — o
S €0 0
o)
S BE=—r
280

e - ———

Gaussian
4 surface

—»
+ E
>

* Uniform field - independent of distance from sheet
- Same as earlier result but no integration needed now
* Good approximation for finite sheet when r << L, far from edges.

(®)
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Example: Fields near parallel nonconducting sheets - 1

e Bring two “large” nonconducting sheets of charge close to each other,
e Approximate as infinite sheets
e The charge cannot move, use superposition.
e There is no screening, as there would be in a conductor.
e Each sheet produces a uniform field of magnitude: Eo=—
280
Oppositely Charged Plates, same |s]|
S -S
P G
< ; >
- — -
e E T >
E 0 E
2 > —L E,
<= } >
e
C— - - - >
EtOt = 0 EtOt - 2 Eol EtOt - 0

o Left region: Field due to the positively charged sheet is canceled by the field
due to the negatively charged sheet. E, is zero.

e Right region: Same argument. E,, is zero.
e Between plates: Fields reinforce. E,, and is twice E; and to the right.
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Example: Fields near parallel nonconducting sheets - 2

Positively Charged Plates, same s Ep = 21
€0
+s +s
<  —
<< } >
— - + — >
EO EO EO E
F e 0
< >
< F—
D E— >

¢ Now, the fields reinforce to the left and to the right of both plates.
e Between plates, the fields cancel.
e Signs are reversed for a pair or negatively charged plates
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Electric field near an infinite conducting sheet of
charge - using Gauss’ Law

Oenc = cYAcap

* Uniform charge per unit area son one face

» Use cylindrical or rectangular Gaussian surface

* End caps just outside and just inside (E = 0)

* E points radially away from sheet outside
otherwise current flows (!!)

* Flux through the cylindrical tube =0
E normal to surface

» On left cap (inside conductor) E=0so0F=0

* Onright cap E is parallel to DAso F = EA_,,

cA
(I) — EACap — Qenc — cap
€0 €0
(o}
E=—
€0

F-0 )y  F=EA

* Field is twice that for a non-conducting sheet with same s
- Same enclosed charge, same total flux now “squeezed” out
the right hand cap, not both
* Otherwise like previous result: uniform, no r dependence, etc. 3



Charge on a finite sized conducting plate in isolation

H '~ « E=0Iinside the conductor
* Charge density s, is the same on

=it f== .
o & both faces, o/w charges will move to
L ds-r i '*——'bé, make E = 0 inside
- - - Cylindrical Gaussian surfaces S, S’
1y « S = charges distribute on surfaces
v

E—+%1
or €

A
CINE A « Same field magnitude on opposite
L s s sides, opposite directions
= o « Same field by replacing each conductor
[— S > < S’ by 2 charged non-conducting sheets alone:
P - - * cancellation inside conductor
* reinforcement outside
v
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Electric field near oppositely charged conducting plates
(large, but not infinite)
Initially: charge density +/- S, on both faces of each plate (neutral)

Then bring plates close to each other.
Free charge moves to make E = 0 within the metal.
All surface charge density ends up on inner faces, zero on outer.

(valid for infinite sheet) st- = +/- 2s,

o+ = 20, c- = -20; « Charge moves by induction to keep
E =0 inside each conductor

+/ 20'\_ * Field between plates remains uniform
- * Flux through Gaussian surface S =0,
+ s so o =-0"
i E i * Using either S’, q.,.= 0 so E = 0 outside
E=0 =——— . | =0 +Sothe charge density = 0 on the outer faces,
S’ + = * All the net charge density must move
K - K3 to the inner surfaces
™ = - Using either surface S”:
L = (o ke 26
1) E . = = —+ _1
S inside € €
0 0
* This already counts effects of both plates
Parallel pla‘l'e * Fields everywhere would be the same if
. charge distributions were there w/o the
CGPOC”’OT‘ conductors.
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Proof of the Shell Theorem using Gauss’ Law
(spherical symmetry)

—

» Hollow shell of charge, net charge Q S, »~ RN
» Spherically symmetric surface charge / \
density o, radius R / \

* Two spherical Gaussian surfaces:
- S; isjustinside shell, r; <R
- S, is outside shell, r, >R \

* J.,c Means charge enclosed by S; or S, o\ /
N\
OUTSIDE: @, = ondA = 4nrsE, = Genc . Q "~ -
Shell of charge acts like a
E, = > forr,>R point charge at the center
Amegrs of the sphere

INSIDE: @, = §|§od,& = 4qr2E, = denc _
(onS,) S &0

1

Shell of charge creates
zero field inside (anywhere)

E;=0 forr,>R

At point r inside a spherically symmetric volume (radius R) of charge,
- only the shells of charge with radii smaller than r contribute as point charges
- shells with radius between r and R produce zero field inside.



CHAPTER 2 2 SUMMARY

Electric flux: Electric flux is a measure of the “flow™ of

b= [E dA
electric field through a surface. It is equal to the product E f cos¢é /\\
of an area element and the perpendicular component of % }
E, integrated over a surface. (See Examples 22.1-22.3.) = f E, dA = E-dA [225) 4

E—
AV

Gauss’s law: Gauss’s law states that the total electric b — dE m
flux through a closed surface. which can be written as £ cosd
the surface integral of the component of E normal to the
surface, equals a constant times the total charge Q_, — f E, dA = f E-dA
enclosed by the surface. Gauss's law is logically equiva-
lent to Coulomb’s law, but its use greatly simplifies Qencl

problems with a high degree of symmetry. (See Exam- (22.8], (22.9)

ples 22.4-22.10.)
When excess charge is placed on a conductor and is
at rest, it resides entirely on the surface, and E=0

everywhere in the material of the conductor. (See Exam-
ples 22.11-22.13.)

€n
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Electric field of various symmetric charge distributions: The following table lists electric fields caused by several symmetric charge
distributions. In the table, g, Q. A, and o refer to the magnitudes of the quantities.

Charge Distribution

Point in
Electric Field

Single point charge g

Charge g on surface of conducting sphere with radius R

Infinite wire, charge per unit length A

Infinite conducting cylinder with radius R, charge per
unit length A

Solid insulating sphere with radius R, charge (? distributed
uniformly throughout volume

Infinite sheet of charge with uniform charge per unit area o

Two oppositely charged conducting plates with surface
charge densities +o and —or

Charged conductor

Distance r from g

Outside sphere, r = R
Inside sphere, r << R

Distance r from wire

Outside cylinder, r = R
Inside cylinder, r << R

Outside sphere, r = R

Inside sphere, r << R

Any point

Any point between plates

Just outside the conductor

Electric Field
Magnitude
1 g
E= 4'i|TEu rz
1 g
E = =
4'i|TEu rz
E=0
1 A
E = —
2meg 1
1 A
E= —
2meg 1
E=0
Y
E= —
dreg =
1 Or
E= —
dwey B2
o
E=—
2ep
E==
£
E=Z
€n
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