Physics 121 - Electricity and Magnetism
Lecture 05 -Electric Potential
Y&F Chapter 23 Sect. 1-5

e Electric Potential Energy versus Electric Potential
e Calculating the Potential from the Field

e Potential due to a Point Charge

e Equipotential Surfaces

Calculating the Field from the Potential
Potentials on, within, and near Conductors
Potential due to a Group of Point Charges
Potential due to a Continuous Charge Distribution
Summary
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Electrostatics: Two spheres, different radii, one with charge

Q,,=10C Q=77

r,.=10cm .

: ' Connect wire between spheres,
wire then disconnect it

Qx=0C Q= ?7?

Are final charges equal?
What determines how charge
redistributes itself?

r,=20cm

A mechanical analogy: Water pressure
Open valve, water flows

N\ O What determines final

water levels?
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ELECTRIC POTENTIAL V()

DEFINITION:

Electrostatic Potential = Potential Energy per unit test

charge due to an electric field

* Related to Electrostatic Potential Energy.....but.....
- Summarizes effect of charge on a distant point without specifying
a test charge there (Like field, unlike PE)
 APE: ~ work done ( = force x displacement)
* AV: ~ work done/unit charge ( = field x displacement)
+ Scalar field - Easier to use than E (vector)
* Both APE and AV imply a reference level
* Both PE and V are conservative forces/fields, like gravity
» Can determine motion of charged particles using:
Second Law, F = qE

or PE, Work-KE theorem &/or mechanical energy conservation

Units, Dimensions:

* Potential Energy: [U] are Joules

* Potential: [V] are [U)/[q] Joules/C. = VOLTS

-+ Synonyms: [V], [FI[d)/[q]. and [ql[E][d)/[q] = N.m / C.

- Units of field [E] are [V])/[d] = Volts / meter - same as N/C.
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Reminder: Work Done by a Constant Force

5-1: The figure shows four examples of force F is applied to an object. In
all four cases, the force has the same magnitude and the displacement of
the object is to the right and has the same magnitude.

Rank the cases in order of the work done by the force on the object, from
most positive to the most negative.

Dr

I, IV, 111, I1 >
II, I, IV, II1
III, 11,1V, 1

. I, IV, 11, I11 - .
I I

F q

@’ ‘c,r#":‘\ }

moowp
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Work Done by a Constant Force (a reminder)

The work AW done on a system by a constant
external force on it is the product of: Dr

e the magnitude F of the force

e the magnitude As of the displacement
of the point of application of the force

e and cos(0), where 0 is the angle
between force and displacement vectors:

AW =F.AS =FAscos 0

AT

vV
If the force varies in direction and/or

magnitude along the path: W, = FAr W,, = FArcosod

f
AW = IIE ods “Path Integral”
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Electrostatic Potential Energy versus Potential

) ) . . Path Field line
Conservative fields are associated with \

potential energy functions

* Work done around any closed path equals zero.
« Work done by the field on a test charge moving
from i to f does not depend on the path taken.

AU=—AW =—F_oAS (basic definition)

— —

POTENTIAL ENERGY DIFFERENCE:
Charge q, moves N = -
from i to f U -U = AUE_AWE_IFeOdS=_CIoJ'E°dS
along ANY path ‘ ‘

AW - . o
POTENTIAL AV =———=—FEocAs (from basic definition)
DIFFERENCE: Yo
Potential is . ( Evaluate integrals
potential energy | V; = V. = AV = -AW/(q, = —IE odsS | on ANY path from
per unit charge i itof)
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Some distinctions and details

/ Path Field line
Q

AU =q,AV

The field depends on a charge
distribution elsewhere).
A test charge g, moved
between i and f gains or loses
potential energy DU. .
AU does not depend on path

AV is also path-independent
and also does not depend on
|q,| (test charge).

Use Work-KE theorem to link

Only differences in electric potential
and PE are meaningful:

— Relative reference: Choose arbitrary
zero reference level for AU or AV.

— Absolute reference: Set U;= 0 with all
charges infinitely far apart

— Volt (V) = Sl Unit of electric potential

— 1volt =1 joule per coulomb =1J/C

— 1J=1VC and 1J=1Nm
Electric field units — new name:

— 1N/C=(1N/C)(1VC/INm)=1V/m
Electrostatic energy: electron volt

— 1eV=work done moving charge e

through a 1 volt potential difference
= (1.60X101° C)(1 J/C)=1.60X1019]

potential differences to motion
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Work and PE : Who/what does positive or negative work?

5-2: In the figure, suppose we exert a >

force and move the proton from point i >

to point f in a uniform electric field f P | E
=

directed as shown. Which statement of
the following is true?

A. Electric field does positive work on the proton.
Electric potential energy of the proton increases. \

B. Electric field does negative work on the proton. o
Electric potential energy of the proton decreases. Q

C. Our force does positive work on the proton. C
Electric potential energy of the proton increases. /é\o

D. Our force does positive work on the proton. S

A

Electric potential energy of the proton decreases. ™
E. The changes cannot be determined. ‘
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EXAMPLE: Find change in potential as test charge +qq
moves from point i to f in a uniform field

Ti
e

DX

DU and DV depend only on the endpoints
E ANY PATH from i to f gives same results

vV v v YV

D

To convert potential to/from PE just multiply/divide by q,

AV _ J‘E d§ 'Ee=q0|§ AUfiE—AWfi=—I|EOd§
fi= )=

path

path

AV =AU /gy AU = gpAVy

EXAMPLE: CHOOSE A SIMPLE PATH THROUGH POINT “O"
AVf’i = VO,i +AVf’O

AV,;=0 Displacement i > o is normal to field (path along equipotential)

- - External agent must do positive work on
S AVij= AVi o =-EcAX=+E|AX|  positive test charge to move it from o > f
- units of E can be volts/meter
* E field does negative work
What are signs of DU and AV if test charge is negative?  _ ,..s



Potential Function for a Point Charge

* For charges infinitely far apart choose V.., =0 (reference level)
« AU = work done on atest charge as it moves to final location

« AU = q,AV

* Field is conservative - may choose most convenient path = radial

Find potential V(R) a distance R from a point charge q :

VR)=V,—-Vi = —IEOdé‘: along radial path fromr = R to o
R

(e o]

= q - [ ¢dr 1 q

Er)=k—r —|EodS=-VR)=-kg | = =kg-| =-k—=
(D =k 7 M- [Ecds=-VR)=—ka [z =ka | =k

: _ . 4 - Positive for q > 0, Negative for q<0

- V(R)=+k - Inversely proportional to r! NOT r2

Similarly, for potential ENERGY: (use same method but integrate force)

_ _ 1 990 - Shared PE between q and q,
Ur)=doV(R) =k - Overall sign depends on both signs

g=1puC. R=1m - Vi =+ 9000 Volts

xample:
E ample If atestcharge q, = +/- 3 uC then Uy = +/- .027 Joules .,y Fail 2013



On equi-potential surfaces:

Voltage and potential energy are constant i.e. AV=0, AU=0

Zero work is done moving charges along an equi-potential

No change in potential energy on an equi-potential

Electric field must be perpendicular to displacement along surface

AV = —E o AS = -EAs cos(0) =0 onsurface
and AU=—-AW =-F,0AsS =0

| /-Path Field line sy p\/ = 0
i

* Equipotentials are perpendicular to the electric field lines

CONDUCTORS ARE ALWAYS EQUIPOTENTIALS sobVv =0 along
- Charge on conductors moves to make E;, =0 any path on or

- E.s IS perpendicular to surface _
- In aconductor




Examples of equipotential surfaces

Point charge or

(a)

Equipotentials
are planes

Equipotentials
are spheres

Uniform Field outside sphere of Dipole Field
o charge
Equipotential surface
Field line AT T A
I ! I I I |
| | | | I I -
[ I I [ - 4
N A Qs
1 | 1 | | | i
| I I I | L |
I I I I | [ | I
o I I o X /
T T T T T I A
I ! I ! I | -~ -~ /
I [ I [ I | » -
L i i L 7
b | ! ! Lo \
L | i L P Y X
| | | | | | == e _ -
—— T e

Equipotentials
are not simple
shapes
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The field E(r) is the gradient of the potential

Field line

dV =—Eds = -E ds cos(0) - / :
‘Equipotentials are perpendicular to the field T ds 3
‘For path along equipotential, DV = O ] / -

-Component of ds on E produces potential change

/

- e - - — ] ———

Y Y Y

‘6radient = spatial rate of change
dv__av- av: v

o e - -] - - -

W E=-—=-—"i-=2j-=k dsSis.Lltoequipotential
ds ax oy 0z
Math note: ﬁ();xy,z) Is a" partial" derivative
EXAMPLE: UNIFORM FIELD E _
. AV =-EoAS= —EAs
+ —_— E
Ds _ _ _

N AU =QqpAV = —(qoEAS = —FAs
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Potential difference between oppositely charged
conductors (parallel plate capacitor)

N c+ o-
« Equal and opposite charge densities : i =
» All charge on inner surfaces : o >
o - B
AX << L 1:.:%0 -+|- I : P
— o C
c'=-0 |o'|=0c E=— L
80 +‘III AX IEEEN i
AV =Vt -V =—EoAX \ /
v
= V.
Example: Vi E=0 i

Find the potential difference AV across the capacitor, assuming:
c = 1 nanoCoulomb/m?
Ax = 1 cm & points from plate "i" to plate “f"
Uniform field E

1x107°
€y

AV = —EoAX = —E AX = x 1072 AV =+1.13volts

A test charge +q loses potential energy AU = gAV as it moves from

+ plate to — plate along any path (including external circuit)
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Comparison of point charge and mass formulas

VECTORS FORCE FIELD
Gravitation  F(F)= Gm—;vlf g(r) = GMZ
r r

L A% Er=_L 22

force/unit mass
(acceleration)

Electrostatics IE(F) =_— force/unit charge

dme 2 dme | (n/C)
SCALARS POTENTIAL ENERGY POTENTIAL
Gravitation U g (r) = —GT—M Vg (r) = _GrM (nPoEt/:sl‘lei:I I::;Zi )
Electrostatics Ue (r)= 473801—Q Ve (r)= 41330% PE/unit charge

Fields and forces ~ 1/R? but Potentials and PEs ~ 1/R?
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Visualizing the potential function V(r)
for a positive point charge (2 D)

V(r)
1
V(r) = a L Vir50)=o "pole”

0 r . /
_ 2 2\1/2
r=(x"+y") | For q negative

V is negative
(funnel)
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Conductors are always equipotentials

Example: Two spheres, different radii, one charged to 90,000 V.
Connect wire between spheres - charge moves

Conductors come to same potential r,= 10 cm
Charge redistributes to make it so V,,= 90,000 V.
wire
Vi = Vy Qi +Qy = Qyp \

Initially: = go .

KO V,= 0 V.
Vig = 9x10* volts= 10 = Q,, =1.0 uC. Qu=0 V.

§!

Find the final charges:
kQqf _ Vo = k[Q1p — Q1]
= Vy =

Vir =
- Q, (1+2)l = 033 uC
10 r ) :

r ry
Quf =
) 1
Q= Qp—Qy = 0.67pC.

Find the final potential(s):

9 -6
Vi = NOJT: _ 9%10” x0.33x x10 — 30,000 Volts = Vs,

Iy 0.1 Copyright R. Janow Fall 2013




Potential inside a hollow conducting shell

V.=V, (shell is an equipotential)

V, = V. = 18,000 Volts on surface

R=10cm

Shell can be any closed surface (sphere or not)

Find potential V, at point “a” inside_ shell
Definition: AV =V, =V ==[E<ds

Apply Gauss' Law: choose GS just inside shell:
Jenc =0 = E=0 everywhere inside => AV =0

[ Vo =Viyriae= Vp =V, =V, =18,000 Volts]

surface ~

A . ; * ; ;
Potential is continuous across surface - field is not

E(r) E V(I’) Evinside:VsurfE

: Einside=0 Eoutsige= kG / 12 Voutside= K0 / T

______________________________

! r
R r Copyrigﬁ[ R. Janow Fall 2013



Potential due to a group of point charges

Use superposition for n point charges

A AN =T
Vi) =3V = L3 G AN
i=1 Ameg izl‘r - i‘ 17 o
ST P
« The sum is an algebraic sum, not a vector sum. LT 'QM e

—— -~ WIS o

—_—
H
P
—— — i
—_—
N

Reminder: For the electric field, by superposition, for n point charges

« E may be zero where V does not equal to zero.
 V may be zero where E does not equal to zero.
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Examples: potential due to point charges Use Superposition

Note: E may be zero where V does not = O
V may be zero where E does not = O

TWO EQUAL CHARGES - Point P at the midpoint between them
Ep = O bysymmetry
q Q- I: ................ O-+q Vp = d/2 d/2 4? obviouslynotzero

F and E are zero at P but work would have
to be done to move atest charge to P from infinity.

Letq=1nC,d=2m: Vp = 49><1092>< 107 =18 Volts
DIPOLE - Otherwise positioned as above
— g —» Ep# 0 obviously Ep =2 kzq = k;]
d</4 d
+q O ................. @ O - a kq kq 3
P but Vp = — - —— =
d/2 d/2

9_10-9

letq=1nC,d=2m: Ep= =89"104><1O =18 V/m (or N/C)
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Another example: square with charges on corners

o Find E & V at center point P
Sd d=a\2/2

aé <P Ea Er=0 bysymmetry

RN _ kq _
&g VP—Z ' ZCI.——[OI q+q-q] ‘ Vp = 0

Another example: same as above with all charges positive

Ep = 0 bysymmetry,again
Kk 4kq 8kq

kq;
Vo = A= . = = =510 Volts
i z,: f dzi:q' av2/2 a2

Another example: find work done by 12 volt battery in 1 minute
| as 1 ampere current flows to light lamp
! AW = work done =- AU= - QAV

+ Q = charge movedfrom +to - by current
E g} = iIAt =lamp.60sec = 60C.
i < AU= QAV = 60xAV AV = —12 Volts
- AU=-720 Joules

AW = — AU = +720 Joules (from battery) 212013



Electric Field and Electric Potential

5-3: Which of the following figures have V=0 and E=0 at
the red point?
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Method for finding potential function V at a point P due to a
continuous charge distribution

1. Assume V = 0 infinitely far away from charge distribution (finite size)

2. Find an expression for dq, the charge in a “small” chunk of the distribution, in
terms of A, G, or p [ adl

S\

for a linear distribution

dg = < od”A for a surface distribution

'

| pd’V for a volume distribution

Typical challenge: express above in terms of chosen coor'dma’res

3. At point P, dV is the differential contribution to the potential due to a point-like
charge dq located in the distribution. Use symmetry.

dVv = dq scalar, r=distance from dq toP
Al

4. Use “superposition”. Add up (integrate) the contributions over the whole
distribution, varying the displacement r as needed. Scalar V5.

_[dVP = 2 1 I dg (line, surface, or volume integral)
dist T€0 gist '
5. Field E can be gotten from potential by taking the “gradient”:
. - oV _ o Rate of potential change
dV=-Eods ‘ E= - A perpendicular to equipotential

“CUMYIIYIIL I valivuvw rall £vio



Example: Potential along Z-axis of a ring of charge

Z

Q =charge on the ring
| = uniform linear charge density = Q/2pa
r = distance from dq to “P” = [a2 + z2]1/2

ds = arc length = ad¢

dg=2Ads = Aad¢ All scalars - no need to
dVv =k d_q worry about direction
r

V= [dv= ka}“jd(p——

ring

k
» V= : 21172
[z +a ]

+Asz >0, V> kQ/a
- Asa > 0or z > inf, V- point charge

FIND ELECTRIC FIELD oV ~ kQ 8(z?) - kQz A
USING GRADIENT E,=—k=— =—— =35
(along z by symmetry) 0z 2r= 0z [z" +a"]

As -E > 0as z > 0 (for "a” finite)
Before - E - point charge formula for z >> a 3



Example: Potential Due to a Charged Rod

A rod of length L located parallel to the x axis has a uniform linear charge density A. Find
the electric potential at a point P located on the y axis a distance d from the origin.

Start with

[ E[X2 +d2]1/2
dq = Adx ¢P
1 dg 1 Adx T
dv = 1 = 2 | A2\1/2
dney 1 4Amey (X7 +d°) d
Integrate over the charge distribution L
L
7» dX ;\, 2 2.1/2 L — — X
V=|dV= = In{ x +(x“+d
‘[ 2‘;47‘80 (x? +d?)l/?  4ne, [ ( ( ) )]0 !‘ L ’!
_ M [In(L+(L2+d2)1/2)— In(d)] (a)
41t80
Check by differentiating o P
iIog(x+r) for r=[x%+d?]'? T
dx
d T
dilog(x+r)= Lodix+r) 1 g0y 1 g% 1 rex 1 i \
X X+r dx X+r dx”  X+r ro X+r r r
— =) —_— X
Result L L
A [L+P+dd)t? x—
V= In ( )
47'580 d (b)
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Example: Potential on the symmetry axis
of a disk of charge

* Q =charge on disk whose radius = R. o

« Uniform surface charge density ¢ = Q/4nR?2 . dA=ad¢da
* Disc is a set of rings, each of them da wide in radius 0"
 For one of the rings: Z

2=a’+z%> cos(®)=z/r dA = addda R

da=edA-cadads , _ kdg
Pz — ?

"
R

! I an ° Za dazdg)z Double integral -

4mg, 70 ¢ [a”+2°] xi |

\

\ l
\
\

Ve

zZ

* Integrate twice: first on azimuthal angle f from 0 to 2p which yields a factor of 2p then
on ring radius afrom 0 to R

onc®  ada (note: (1xx)"* =1+ x—ix’.for x*<<1)
Ve, = |
i e, 5, [a® + z*]"? “Far field” (z>>R): disc looks like point charge
1R? 1
Use Anti- a d . o _aune Vdiskzi|:z+___‘ q Q
derivative: [a?+z2]Y2 =£[a +27] 2g, 2 z 4me, z

“"Near field” (z<<R): disc looks like infinite

heet of ch
disk=i[[22+R2]llz_‘Z‘] ST o e

Vaisk ® GR[l_E] _(1__) E———
2¢, R 2ng, R dz 280




CHAPTER 2 3 SUMMARY

Electric potential energy: The electric force caused by
any collection of charges at rest is a conservative force.
The work W done by the electric force on a charged par-
ticle moving in an electric field can be represented by
the change in a potential-energy function U.

The electric potential energy for two point charges g
and gy depends on their separation r. The electric potential
energy for a charge gy in the presence of a collection of
charges gy, g7, g3 depends on the distance from gy to each
of these other charges. (See Examples 23.1 and 23.2.)

(23.2]
(23.9

Wose = Uy — U
L 4

dmey r
(two point charges)
=%(ﬂ+ﬂ+ﬂ+m)
473'(‘:'4] r ) r
_ B 4
471'E[| T Ti
{gq in presence of other point charges)

(23.100

41

= ﬂ ﬁ - 2 L E]
dmeg \ry 1y 3

g3
!3-""—‘__70

Electric potential: Potential, denoted by V, is potential
energy per unit charge. The potential difference between
two points equals the amount of work that would be
required to move a unit positive test charge between
those points. The potential V due to a quantity of charge
can be calculated by summing (if the charge is a collec-
tion of point charges) or by integrating (if the charge is a
distribution). (See Examples 23.3, 23.4, 23.5, 23.7,
23.11, and 23.12.)

The potential difference between two points a and b,
also called the potential of @ with respect to b, is given
by the line integral of E. The?:rtentia] at a given point
can be found by first finding E and then carrying out this
integral. (See Examples 23.6, 23.8, 23.9, and 23.10.)

u 1
v-—=—1 (23.14)
go dmeyr
{due to a point charge)
L 1 i
=—-= & (23.15)

qo Ameg < r;
(due to a collection of point charges)

__! (4
dmey r
(due to a charge distribution)
b b
V,— V= fE-di’ = f Ecosd dl
o o
[23.17]

(23.16)

|

V=1 ﬂ+2+EJ
yodme i oo

32
0

.
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CHAPTER 2 3 SUMMARY

Electric potential energy: The electric force caused by
any collection of charges at rest is a conservative force.
The work W done by the electric force on a charged par-
ticle moving in an electric field can be represented by
the change in a potential-energy function U

The electric potential energy for two point charges g
and ¢p depends on their separation r. The electric potential
energy for a charge gy in the presence of a collection of
charges gy . g>. g3 depends on the distance from gy to each
of these other charges. (See Examples 23.1 and 23.2.)

Woos = U, — L (23.2]
1

v-—20 (23.9)
daey r

(two point charges)

v (ﬂ+ﬂ+‘?_3+ )
4’ﬂ'Eu r r 3

. () (23.10)

471’E[| LI

(gp in presence of other point charges)

Qi o, 90 ﬂ+ﬂ+ﬂ]

ey \1y ra N

2
.

Electric potential: Potential, denoted by V, is potential
energy per unit charge. The potential difference between
two points equals the amount of work that would be
required to move a unit positive test charge between
those points. The potential V due to a quantity of charge
can be calculated by summing (if the charge is a collec-
tion of point charges) or by integrating (if the charge is a
distribution). (See Examples 23.3, 23.4, 23.5, 23.7,
23.11, and 23.12.)

The potential difference between two points g and b,
also called the potential of @ with respect to b, is given
by the line integral of E. The _potential at a given point
can be found by first finding E and then carrying out this
integral. (See Examples 23.6, 23.8, 23.9, and 23.10.)

V= v__14 (23.14)
gy dweyr
(due to a point charge)
v | 5
=—= & (23.15)

qo  dmep T i
(due to a collection of point charges)

__! [%
dmey r
(due to a charge distribution)

b ]

vV, - 1.@=/E-di’=/£cm¢-d:
i a

(23.17)

(23.16]

' . .
il 1,-"'_: 1 ﬂ +i + q_J
s dmeg \ry B 1y

92
r;—-———’_j’o

r|_ E
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Equipotential surfaces: An equipotential surface is a surface on which the potential has the same Cross section of
value at every point. At a point where a field line crosses an equipotential surface, the two are per- L g T
pendicular. When all charges are at rest, the surface of a conductor is always an equipotential sur-
face and all points in the interior of a conductor are at the same potential. When a cavity within a
conductor contains no charge, the entire cavity is an equipotential region and there is no surface
charge anywhere on the surface of the cavity.

Finding electric field from electric potential: If the poten- _ @V E = _av E = _av
tial V is known as a function of the coordinates x, y, and oo Y ey Y ag
z, the components of electric field E at any point are [23.19]
civen by partial derivatives of V. (See Examples 23.13
d23.14 } = ,‘ﬂi" ,\BV il
R E=—-{1—+ j—+ k— ) [23.20]
ax dy az

{vector form)
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