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Physics 121 - Electricity and Magnetism

Lecture 06 - Capacitance 
Y&F Chapter 24 Sec. 1 - 6

• Overview

• Definition of Capacitance

• Calculating the Capacitance

• Parallel Plate Capacitor

• Spherical and Cylindrical Capacitors

• Capacitors in Parallel and Series

• Energy Stored in an Electric Field

• Atomic Physics View of Dielectrics 

• Electric Dipole in an Electric Field

• Capacitors with a Dielectric

• Dielectrics and Gauss Law

• Summary
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What Capacitance Measures

How much charge does an arrangement of conductors hold 
when a given voltage is applied?

▪ The charge needed  depends on a geometrical 

factor called capacitance.    

VCQ =

Example:
• Two conducting spheres:   Radii R1 and R2 = 2R1.   Different charges Q1 and Q2.

• Spheres touch and come to the same potential V, 

• Apply point charge potential formula, V(infinity) = 0

 RC 04=Capacitance of a single isolated sphere:
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Example: A primitive capacitor
• The right ball’s potential is the same as the + 

side of the battery.  Similarly for the – ball.

• How much charge flows onto each ball to 

produce a  potential difference of 1.5 V ?

• The answer depends on the capacitance.

DV = 1.5 V

+

_

1.5 V

battery

+ charges

+ charges

+_
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• Measures the charge needed per volt of potential difference 

• Does not depend on applied DV or charge Q.    Always positive.

• Depends on geometry (and on dielectric materials) only

• Units:     1 FARAD = 1 Coulomb / Volt.  - Farads are very large

1 mF = 10-6 F.      1 pF = 1 pico-Farad = 10-12 F  = 10-6 mF = 1 mmF

Definition of 
CAPACITANCE :

     
Volt

Coulombs
      or V        CQ   

V

Q
C   




Example - Capacitance depends on geometry 

• Move the balls at the ends of the wires closer together 

while still connected to the battery

• The potential difference V cannot change.

• But: 

• The distance Ds between the balls decreased

so the E field had to increase as did the stored energy.

• Charge flowed from the battery to the balls to increase 

E.

• The two balls now hold more charge for the same 

potential difference:  i.e. the capacitance increased.
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Capacitors are charge storage devices

• Two conductors not in electrical contact

• Electrically neutral before & after being charged

Qenc= Qnet=0

• Current can flow from + plate to – plate if 

there is a conducting path (complete circuit)

• Capacitors store charge and potential energy

- memory bits   - radio circuits   - power supplies

• Common type: “parallel plate”, sometimes 

tubular

-+
DV

+Q -Q
d

Method for calculating capacitance from geometry:

• Assume two conducting plates (equipotentials) with

equal and opposite charges +Q and –Q

• Possibly use Gauss’ Law to find E between the plates

• Calculate V between plates using a convenient path

• Capacitance C = Q/V

• Certain materials (“dielectrics”) can reduce the E field

between plates by “polarizing” - capacitance increases
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Find E between plates
• A = plate area.  Treat plates as infinite sheets   

• |s+| = |- s-| = s = Q / A = uniform surface charge density

• E is uniform between the plates (d << plate size)

• Use Gaussian surface S (one plate).  Flux through ends

and attached conductors is zero.  Total flux is EA

• Qenc = sA = e0f = 0 EA

sheet)  conducting   (infinite

0 i.e.,0

       

 AQ/  E       /E  =s=

EXAMPLE:  CALCULATE C for a PARALLEL PLATE CAPACITOR         

Find potential difference DV:
• Choose V = 0 on negative plate (grounded)

• Choose path from – plate to + plate, opposite to E field
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• C DEPENDS ONLY ON GEOMETRY

• C → infinity as plate separation d → 0

• C directly proportional to plate area A

• Other formulas for other geometries

path



Copyright R. Janow – Fall 2013

• As before:

EX 24.03:  FIND C for a SPHERICAL CAPACITOR         

qAdE
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Negative
For b > a Vb < Va

• To find potential difference use outward radial 
integration path from r = a to r = b.
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Let b → infinity.  Then a/b → 0  and 
result becomes the earlier formula for 
the isolated sphere:
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• 2 concentric spherical, conducting shells, radii a & b
• Charges are +q (inner sphere), -q (outer sphere)
• All charge on the outer sphere is on its inner 

surface (by Gauss’s Law)
• Choose Gaussian surface S as shown and find field

using Gauss’s Law: 
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)r/(2    )rL2/(qE 00 ==

EX 24.04:  Find C for a CYLINDRICAL CAPACITOR         

• 2 concentric, long cylindrical conductors
• Radii a & b and length L >> b => neglect end effects
• Charges are +q (inner) and -q (outer),  is uniform
• All charge on the outer conductor is on its inner 

surface (by Gauss’s Law)
• Choose Gaussian surface S between plates and 

find field at radius r.  
• E is perpendicular to endcaps => zero flux contribution  

)rL2(EEAq 00 ==qAdE   
S
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• So:

For b > aVb < Va

• To find potential difference use outward radial 
integration path from r = b to r = a.
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C → 0  as b/a → inf
C → inf as b/a → 1

C depends only on 
geometrical parameters
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Examples of Capacitance Formulas

• Capacitance for isolated Sphere

• Parallel Plate Capacitor

• Concentric Cylinders Capacitor

• Concentric Spheres Capacitor

• Units:  F (Farad) = C2/Nm = C/ Volt = 0length 

- named after Michael Faraday. [note: 0 = 8.85 pF/m]

d
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RC 04=

All of these formulas depend only on geometrical factors
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Capacitors in circuits

CIRCUIT SYMBOLS:        

CIRCUIT DEFINITIONS:         

Open Circuit:    NO closed path.  No current.  Conductors are equi-potentials 
Closed Circuit:  There is/are completed paths through which current can flow.
Loop Rule:       Potential is a conservative field

→ Potential CHANGE around ANY closed path = 0

+

-

circuit  the  inpoint    apast  flow     charge    of  rate

 Current

            
dq/dt     i   
+=



Example: CHARGING A CAPACITOR

+

-

i

C
E

-

+

S

• Current flows when switch is CLOSED, completing circuit

• Battery (EMF) maintains DV (= EMF E), and supplies energy by

moving free + charges from – to + terminal, internal to battery

Convention: i flows from + to – outside of battery
When switch closes, current (charge) flows until DV across 

capacitor equals  battery voltage E.  

Then current stops as E field in wire → 0

DEFINITION: EQUIVALENT CAPACITANCE
• Capacitors can be connected in series, parallel, or more complex combinations

• The “equivalent capacitance” is the capacitance of a SINGLE capacitor that would

have the same capacitance as the combination.

• The equivalent capacitance  can replace the original combination in analysis.
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Parallel capacitors - Equivalent capacitance 

The actual parallel circuit...

 ii V    CQ     =

...and the equivalent circuit:

 eqtot V CQ     
E

Ceq

Qtot

DV

The parallel capacitors are just like a 
single capacitor with larger plates so....  (parallel)   QQ itot =

Charges on parallel capacitors add

V...)C3C(C     ...VCVCVC Q    21321tot +++=+++=

 (parallel) ieq   CC =Parallel capacitances 
add directly

Question:  Why is DV 
the same for all 
elements in parallel?

Answer:  Potential is 
conservative field, for ANY 
closed loop around circuit:

 Rule) Loop (Kirchoffi   0V =

V is the same for each branch

E

C1 C2 C3

Q1 Q2 Q3 ....
DV ....
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Series capacitors - equivalent capacitance
The equivalent circuit...

 toteqtot  VCQ 

E

Ceq

Qtot

DVtot

The actual series circuit...

V1

C1 C2

DV2

C3

DV3

E

..... V V V      VV  32 1itot +++== 

DVi are NOT necessarily the same for 
each capacitor in series

 Q     C/Q V  sameii so =

eqi321tot Q/C  1/C Q     ...C/QQ/C Q/C V    =+++= 

But... charges on series capacitors 
are all equal - here’s why.....

Gaussian surface

Qenc = 0

neutral..so 

Q1 = - Q2

Q1 Q2
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          (series)   
C

1
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1Reciprocals of series 
capacitances add

For two capacitors

in series:
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Example 1:         A 33mF and a 47 mF capacitor are connected in parallel   

Find the equivalent capacitance

Solution:  F    C C   C 2 1para m=+= 80

Example 2:         Same two capacitors as above, but now in series connection

F  .      
47  33

47 x 33
     

C C

CC
   C

2 1

2 1
ser m=

+
=

+
= 419Solution:  

Example 3:         A pair of capacitors is connected as shown   

• C1 =  10 mF, charged initially to 100V = Vi

• C2 =  20 mF, uncharged initially

Close switches.  Find final potentials across C1 & C2.

Solution: 
• C’s are in parallel → Same potential Vf for each
• Total initial charge:

• Charge is conserved – it redistributes on both C1 & C2

.C  10   VC  Q  Q -3
i 11itot ===

• Final charge on each:

 V.33    
10 x 30

10
    V  C C    V / Q  C

6-

-3

f21ftoteq ==+==

C.10 x 6.7   VC  Q    C.10 x 3.3   VC  Q  -4
f 2f

 -4
f 1f ==== 21
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Three Capacitors in Series

6-2: The equivalent capacitance for two 
capacitors in series is:               

Which of the following is the equivalent 
capacitance  formula for three capacitors 
in series?

A.

B.

C.
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D.

E.
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CCC

CCCCCC
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321
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CCC
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Apply formula for Ceq twice
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Example: Reduce circuit to find Ceq=C123

for mixed series-parallel capacitors

C3

C1 C2

V

parallel

2112 CCC +=

C3

C12

After Step 1

V series

312123

111

CCC
+=

C123

After Step 2

V

312

312
123

CC

CC
C

+
=

C1 = 12.0 mF,  C2 = 5.3 mF,  C3 = 4.5 mF

C123 = (12 + 5.3) 4.5 / (12 + 5.3 + 4.5) mF = 3.57 mF

Values:
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Series or Parallel?

6-3: In the circuits below, which ones show

capacitors 1 and 2 connected in series?

A. I, II, III

B. I, III

C. II, IV

D. III, IV

E. None

V

C1

C3

C2

V
C2

C1

C3

V

C3

C1

C2

V

C1

C2

C3

I II

III IV
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Energy Stored in a Capacitor
When charge flows in the sketch, energy stored in the 

battery is depleted.  Where does it go?

+

_

1.5 V

battery

+ charges

+ charges

V=1.5 V

+
_
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q
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• Charge distributions have 
potential energy.  Charges that 
are separated in a neutral body 
store energy.

• The electric potential is defined 
to be

V = U/q,    U = qV
• A small element of charge dq on 

each plate of a capacitor stores 
potential energy:

dU = V dq
• The energy stored by charging a 

capacitor from charge 0 to Q is 
the integral:



Copyright R. Janow – Fall 2013

• The total energy in a parallel plate capacitor is

• The volume of space filled by the electric field 
in the capacitor is = Ad, so the energy density 
u is

• But for a parallel plate capacitor, 

• so

 =−= EdsdEV


Capacitors Store Energy in the 
Electrostatic Field
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Energy is stored in 
the electric field
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Model for a Molecule that can Polarize
A dipole in a uniform external field.. 

..feels torque, stores electrostatic potential energy

dqp




  Exp


=

• |torque| = 0 at  q = 0 or  q = 
• |torque| =  pE  at  q = +/- /2
• RESTORING TORQUE: t(-q) = t(+q)

 EpUE


−=

Polarization: An external field aligns dipoles in a material, causing 

polarization that reduces the field

p


0E
 +

+

+

+
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-

-
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-
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 E   E  E 
poldiel
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+=

0
pol

E


See Lecture 3
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Dielectric materials in capacitors
• Insulators POLARIZE when an external electric field is applied 

• The NET field inside the material is reduced.
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MOLECULAR VIEW

Dielectrics increase capacitance  
For a given DV, more movable 
charge sfreeis needed  

Dielectric 

constant
1

vacuum

dielectric

C

C

Inside conductors, polarization reduces Enet to zero

Polarization surface charge density

reduces free surface charge density 

snet= sfree – spol

(sfree = sext =  svac)

E0= Evac is field due to free charge

Response to Evac is  the polarization 

field  Epol

Actual weakened net field inside is 

Ediel =  E0 – Epol = Enet

pol
E


diel
E

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Representing Dielectrics

vac
0

diel C
d

A
C =


=

• A dielectric weakens the field, compared to what it would be for a 
vacuum

= 0vacdiel /D  /EE 


• For example, the capacitance of a parallel plate capacitor increases 
when the space is filled with a dielectric:

• 0 is the free space permittivity.

• All materials (water, paper, plastic, air) polarize to some extent and 

have different permittivities   = 0

•  is the dielectric constant - a dimensionless number. 

• Wherever you see 0 for a vacuum, you can substitute 0 when 

considering dielectric materials.
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What happens as you insert a dielectric?
Initially, charge capacitor C0 to voltage V, charge Q, field Enet.

• With battery detached insert dielectric

• Q remains constant, Enet is reduced

• Voltage (fixed Q) drops to V’.

• Dielectric reduced Enet and V.

0C

Q
V =

0C

Q
V


=

constant  a    Q =  =−= EdsdEV


VCQ 0=

VC'Q 0=

constant  a    V =

E

E

Q'Q 

• With battery attached, insert dielectric. 

• Enet and V are momentarily reduced 

but battery maintains voltage E

• Charge flows to the capacitor as

dielectric is inserted until V and Enet  

are back to original values.

OR
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Gauss’ Law with  a dielectric

netpol
S

freediel0 qqqAdE =−= 





• K could vary over Gaussian surface S. Usually it is constant and factors

• Flux is still measured using field without dielectric:  Evac= Ediel= D/e0)

• Only the free charges qfree (excluding polarization) are counted as qenc in

the above.  Using K on the left compensates for the polarization.

• When applying the above include only qfree. 

Ignore polarization charges inside the Gaussian surface

AdEAdEd dielvac








==

Alternatively:

  ==
S S

diel0free
S

vac0 AdDAdEq    AdE











free charge on plates
field not counting polarization = 0Evac

{

The “Electric Displacement” D measures field that would be present due to 

the “free” charge only, i.e. without polarization field from dielectric

dieldiel0vac0dielvac E  EE D        EE ==

OPTIONAL
TOPIC
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Lecture 6Summary: Chapter 25: Capacitance                                                             
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