Physics 121 - Electricity and Magnetism
Lecture 06 - Capacitance
Y&F Chapter 24 Sec. 1 -6
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What Capacitance Measures

How much charge does an arrangement of conductors hold
when a given voltage is applied?
The charge needed depends on a geometrical Q — CAV
factor called capacitance.

Example:

« Two conducting spheres: Radii R; and R, = 2R;. Different charges Q,and Q,
« Spheres touch and come to the same potential AV,

« Apply point charge potential formula, V(infinity) =0

Voot e ave %l Q, _C_R,
R C "0 R, C, Q, C, R,

N |

Capacitance of a single isolated sphere: ‘ C= AmegR ‘

Examp_le. A p,rlmmve_ca_pacﬁor' DV=15V . charges
* The right ball’s potential is the same as the + +
side of the battery. Similarly for the — ball. — "

« How much charge flows onto each ball to 15V
produce a potential difference of 1.5V ?

- The answer depends on the capacitance. battery

+ charges AN —



Definition of C

CAPACITANCE : AV

& or Q=CAV [Coulombs]

Volt

» Measures the charge needed per volt of potential difference
* Does not depend on applied DV or charge Q. Always positive.
* Depends on geometry (and on dielectric materials) only

e Units:

1 FARAD =1 Coulomb / Volt. - Farads are very large

1mF=10°%F  1pF=1pico-Farad =101 F =10% uF =1 ppF

Example - Capacitance depends on geometry

Move the balls at the ends of the wires closer together
while still connected to the battery
The potential difference AV cannot change.

PUE AV = —[E-dS & EgyoAS

The distance Ds between the balls decreased

so the E field had to increase as did the stored energy.

Charge flowed from the battery to the balls to increase
E.

The two balls now hold more charge for the same
potential difference: i.e. the capacitance increased.

+ charges

L s

1.5V
battery
+ charges o
;ms’ran‘r
/ Q =CAV
N\

increases increases




Capac:tors are cha rge storage devices
« Two conductors not in electrical contact
 Electrically neutral before & after being charged +Q ﬁ
Qenc: Qnet:O ‘ ! -
* Current can flow from + plate to — plate if <«— DV ]
there is a conducting path (complete circuit) -
« Capacitors store charge and potential energy
- memory bits -radio circuits - power supplies

« Common type: “parallel plate”, sometimes _@ ok

tubular : B Q.‘ &=

- / |
/ \
’ \

Q

Method for calculating capacitance from geometry:

* Assume two conducting plates (equipotentials) with q _ _
equal and opposite charges +Q and -Q O =-""= §E odA

* Possibly use Gauss’ Law to find E between the plates € S

» Calculate AV between plates using a convenient path f

» Capacitance C = Q/AV -

- Certain materials (“dielectrics”) can reduce the E field AVy; = _IE ods
between plates by “polarizing” - capacitance increase&°opyright R. Janow - Fall 2013




EXAMPLE: CALCULATE C for a PARALLEL PLATE CAPACITOR

<« d->

A 4

Y

|
1
I's
|
I

%\\T

+
O

path

Find potential difference DV
« Choose V =0 on negative plate (grounded)
 Choose path from — plate to + plate, opposite to E field

AV;

o AN

Find E between plates

A = plate area. Treat plates as infinite sheets

|s*] = |- s|=s=Q /A =uniform surface charge density

E is uniform between the plates (d << plate size)

Use Gaussian surface S (one plate). Flux through ends
and attached conductors is zero. Total flux is EA

Qene = A = e, f = g, EA fegatie

. E = 0-/80 ie. E = Q/SOA | g connection

positive
charge
connection

(infinite conductingsheet)

BB dielectric

&l metal plate

H— aluminum

S Qd _Q
— [Eods=(-)(-)Ed=+ —d_ AT C
path €0

#4— plastic
insulation

Q 80A « C DEPENDS ONLY ON GEOMETRY
— = « C =2 infinity as plate separation d = 0
AV d » C directly proportional to plate area A

* Other formulas for other geometries

TPy R, JANOW = AT 2013



EX 24.03: FIND C for‘ a SPHERICAL CAPACITOR : +q Total charge —¢

- 2 concentric spherical, conducting shells, radii a & b

* Charges are +q (inner sphere), -q (outer sphere)

- All charge on the outer sphere is on its inner
surface (by Gauss's Law)

- Choose Gaussian surface S as shown and find field
using Gauss's Law:

&E-dA=q  q=goEA =gE(4nr?)

* As before: E= q/(47t80r2)

Gaussian
- To find potential difference use outward radial in’:ggs;:f()ﬂ surface

integration path from r=a to r = b.

r=b r=b b
AV=V,-V,=-[E-d§ = ar _ -9 1

2 dme, 2.1 e, I |,

qg (1 1 g (a-b Negative
AV = ——=|= <
47e, (b a) 471:80( ba ) For b > a vb va
Let b > infinity. Then a/b > 0 and
- C= g — 4n80ab result becomes the earlier formula for
) - . the isolated sphere:
| AV | b-a 4re.ab

Co bo = 4ngya 13



EX 24.04: Find C for a CYLINDRICAL CAPACITOR

- 2 concentric, long cylindrical conductors
* Radii a & b and length L >> b => neglect end effects
* Charges are +q (inner) and -q (outer), A is uniform
- All charge on the outer conductor is on its inner
surface (by Gauss's Law)
* Choose Gaussian surface S between plates and
find field at radius r. |
- E is perpendicular to endcaps => zero flux contribution

gD, = aOLE .dA=q (g= e.EA =¢,E(2mrL)
» So: E=q/(2nerL) = AM(2megylr)

Total charge +¢ Total charge —¢

* To find potential difference use outward radial g T iﬁ;ﬁfﬂ
inTegr'aTion pGTh fromr=b tor=a. integration
r=b r=b
AV=V,-V,=-[E-d§ = - I =9 he) = 9 inwra)
r=a 27":Sol- i r 27t80l_ a 27'580L
L
C=q/AV=2ng, ——— V, <V, Forb>a
In(b/a)

C depends only on

z O as b/a > inf geometrical parameters

C
C inf as b/a 2> 1 Copyright R. Janow — Fall 2013



Examples of Capacitance Formulas

e Capacitance for isolated Sphere C =4ngyR
80A
e Parallel Plate Capacitor C= T
Concentric Cyli i L
o ylinders Capacitor C= 271280
In(b/a)
e Concentric Spheres Capacitor C = 4ne ab
- 0
b-a

e Units: F (Farad) = C2/Nm = C/ Volt = g xlength
- named after Michael Faraday. [note: ¢, = 8.85 pF/m]

All of these formulas depend only on geometrical factors

Copyright R. Janow - Fall 2013



Capacitors in circuits

CIRCUIT SYMBOLS: +—_Tl: 1
T |
CIRCUIT DEFINITIONS: -

Current= | = dqg/dt

=rate of + charge flow past a pointin the circuit

L -

Open Circuit:  NO closed path. No current. Conductors are equi-potentials
Closed Circuit: There is/are completed paths through which current can flow.

Loop Rule: Potential is a conservative field
- Potential CHANGE around ANY closed path = O

Example: CHARGING A CAPACITOR

| * Current flows when switch is CLOSED, completing circuit
-  Battery (EMF) maintains DV (= EMF &), and supplies energy by
+_| | + movina free + charaes from —to + terminal, internal to battery

— C Convention:iflows from + to — outside of battery
) When switch closes, current (charge) flows until DV across

e 1= —
-' \ capacitor equals battery voltage E.
Then current stops as E field in wire = 0
S

DEFINITION: EQUIVALENT CAPACITANCE

« Capacitors can be connected in series, parallel, or more complex combinations
* The “equivalent capacitance” is the capacitance of a SINGLE capacitor that would
have the same capacitance as the combination.

» The equivalent capacitance can replace the original combination in analysis.




Parallel capacitors - Equivalent capacitance

The actual parallel circuit... 0 0 0
6 ™ DV | B B B
Qi — Ci AV I B S
C, C, Cs| |
AV is the same for each branch
...and the equivalent circuit: Q
E == DV
Qtot = CquV Cog
The parallel capacitors are just like a _
single capacitor with larger plates so.... QtOt - Z Qi (para”el)

Charges on parallel capacitors add
QtOt = C]_AV + CzAV + CSAV +... = (Cl + C2 + C3 + )AV

Ceq=z C. (parallel)

Parallel capacitances
add directly

Question: Why is DV Answer: Potential is
the same for all conservative field, for ANY

‘2 AV: =0 (KirchoffLoopRule)

elements in parallel? closed loop around circuit:



Series capacitors - equivalent capacitance

The actual series circuit... The equivalent circuit...

AV, I DV2| I DV3I I J_ o ‘ T
C C C
1 2 3 € thot
T [ =T
DV; are NOT necessarily the same for

each capacitor in series ‘ Qtot = Ce qAVtot
AVtOt = Z A\/I = AV]_ + AVZ + AV3 + o :

| Gaussian surface
But... charges on series capacitors | i Qenc =0
are all equal - here's why..... i neutral..so
! i Q =-Q;

&

so AV;=Q/C, sameQ oo
AVioy =QIC1+Q/Co +Q/Cz+... = QD 1/C; = QIC,,
Reciprocals of series L y 1 (series)
capacitances add Ceq C;
For two capacitors 1 1 1 C,+Cy C,Cy
in series: .o T = Ceq= 3
Ceqq C1 Co» CiC, C,+GC,




Example 1: A 33uF and a 47 pF capacitor are connected in parallel
Find the equivalent capacitance

Example 2: Same two capacitors as above, but now in series connection
Solution: Ceer = GG — S3x 47 = 19.4 pF
C, +GC, 33+ 47
Example 3: A pair of capacitors is connected as shown

* C, = 10 pF, charged initially to 100V =V,

<@ « C, = 20 pF, uncharged initially
}/i ! Close switches. Find final potentials across C, & C..
{-—"‘,f—-:r
Solution:

C's are in parallel > Same potential V; for each
° L] Ld L] : _3
0 Total initial charge Qi = Q; =C,V, =103 C.

Charge is conserved - it redistributes on both C; & C,

1073
Ceq= Qo1 /V; = C;+C, = V, = — = 33V.

Final charge on each:

Qi =CV;y =33x10"%C. Qu=C,V; =6.7x10™C.
1f 1Vf 2f 2 Vf




Three Capacitors in Series

6-2: The equivalent capacitance for two ar
capacitors in series is: 1 C,C, @Q
d+d Ci+G >

Which of the following is the equivalent
capacitance formula for three capacitors
in series?

A C,.- C,C,C,4 D. Coq= C +Cr+C4
9 C,+C,+Cy C1CC5
B. C., = C,C, +C,C3 + C,C5 E. ) C,C,C,
q Cr+Ca+Cs Ced= C.C,+C,C,+CoCy
€ Cop = C,C, +C,Cy +C5Cy
C,C,C3 Apply formula for C., twice

Copyright R. Janow — Fall 2013



Example: Reduce circuit to find C,=C,,;
for mixed series-parallel capacitors

After Step 1 After Step 2

1 L
| T parallel T | |

= l = V  series -V Cioz—r
T T
1 1 1 C.,C
C12 = Cl + C2 - + C123 = 12>~3
Cis Cpp Gy Cip+C3
Values: C,=120puF, C,=53puF, C,=45pF

Cpps= (12 +5.3) 45/ (12 + 5.3 + 4.5) pF = 3.57 pF

Copyright R. Janow - Fall 2013



Series or Parallel?

6-3: In the circuits below, which ones show
capacitors 1 and 2 connected in series?

C, Cs
| l
| [
A. I, II, III l Cl# I_‘ ‘ | J_
B. I, III v y |l c
C. II, IV C, TCZ-_ "_
D. III IV — T
E. None
C,
|
\ |||l 1 c, l v :/"
& C, C, I
§ 1%L, 7% |e7@
& T Vv | I
/ l

ok Copyright R. Janow — Fall 2013



Energy Stored in a Capacitor
When charge flows in the sketch, energy stored in the
battery is depleted. Where does it go?

e Charge distributions have V=15V
potential energy. Charges that

are separated In a neutral body l l
store energy. — +

e The electric potential is defined
to be

V=U/lg, U=qV

e A small element of charge d( on + charges

each plate of a capacitor stores —
potential energy:

dU =V dq V=1
e The energy stored by charging a C

capacitor from charge 0 to Q is
the integral:

15V
battery

QL 1Q ., ., Q% o
U—IO dU—EIO g’ dg _E_ECV + charges

Copyright R. Janow - Fall 2013



Capacitors Store Energy in the
Electrostatic Field

The total energy in a parallel plate capacitor is
SoA
2d

The volume of space filled by the electric field §
in the capacitor is = Ad, so the energy density

uis
A 2
u= U = 80 szlgo(—v)

U=1cv?==0-v?

vol 2dAd 2

But for a parallel plate capacitor,

V=—j|§.d§=Ed

SO

Energy is stored in
the electric field

Copyright R. Janow - Fall 2013
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Model for a Molecule that can Polarize

A dipole in a uniform external field..
..feels torque, stores electrostatic potential energy

— o —5

—~ P —
- e [P=qd AU I AN
i\

-
4

R - - I N
>t o T =pXE

= CO]]A]

_>{ = = - |torque] =0 at q=0o0r q==n
— ' * |torque| = pE at q = +/- n/2
=k ’— - RESTORING TORQUE: t(-q) = t(+q)

See Lecture 3 UE =—P- E

Polarization: An external field aligns dipoles in a material, causing
polarization that reduces the field

- + :

- - < L R

E - < + '

O — * >

- < p L .

— — E - < + g
diel = Fo T Fpol E '
pol >



Dielectric materials Iin capacitors

* Insulators POLARIZE when an external electric field is applied
« The NET field inside the material is reduced.

E,= E, . IS field due to free charge

Polarization surface charge density

— -+ -+ -+~ + )
= reduces free surface charge density

MOLECULAR VIEW Responseto E, . is the polarization
NO EXTERNAL FIELD  WITH EXTERNAL FIELD E, field By
. % < 7‘ - , Actual weakened net field inside is
bl @ T L — —
g o o — :v._\- - Egier = Eo— EpoI = Enet
-lq—'J © s ;x
cU +— — ko — —
25 o >e N | .
= C - ?b* e + =
© g E -
Q? (T_) :,ﬂ* ,jk— 1 _ - B
o > > =E I + T
- + diel po —
% -4 -+ -+ -+ B 34 = > =
Q : i — £y + =
© + =
°©
)
O
>
©
£

Non-polar Material
A R

Onet— Stree — Spol
(Sfree = Sext ~ Svac)

Dielectrics increase capacitance
For a given DV, more movable

charge s;..is needed
Inside conductors, polarization reduces E, ; to zero

Dielectric =K = CdielectricZ 1

constant Cyacuum
oyright R. Janow — Fall 2013




Representing Dielectrics

€y is the free space permittivity.
All materials (water, paper, plastic, air) polarize to some extent and
have different permittivities € = Kg

K is the dielectric constant - a dimensionless nhumber.

Wherever you see £ for a vacuum, you can substitute KE; when
considering dielectric materials.

For example, the capacitance of a parallel plate capacitor increases
when the space is filled with a dielectric:

KELA

Cdiel - - KCVGLC

A dielectric weakens the field, compared to what it would be for a
vacuum

—_— —_—

Eqie = E /<

vac

5/801<
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TABLE 26.1

Approximate Dielectric Constants and Dielectric Strengths of Various
Materials at Room Temperature

Dielectric Dielectric Strength®
Material Constant Kk (10°V/m)
Air (dry) 1.000 59 3
Bakelite 4.9 24
Fused quartz 3.78 8
Mylar 3.2 7
Neoprene rubber 6.7 12
Nylon 3.4 14
Paper 3.7 16
Paraffin-impregnated paper 3.5 11
Polystyrene 2.56 24
Polyvinyl chloride 3.4 40
Porcelain 6 12
Pyrex glass 5.6 14
Silicone oil 25 15
Strontium titanate 233 8
Teflon 2.1 60
Vacuum 1.000 00 -
Water 80 -

*The dielectric strength equals the maximum electric field that can exist in a dielectric without electri-
cal breakdown. These values depend strongly on the presence of impurities and flaws in the materials.

© Thomson Higher Education Anow — Fa” 2013



What happens as you insert a dielectric?
Initially, charge capacitor C, to voltage V, charge Q, field E, ;.

With battery detached insert dielectric
Q remains constant, E, ., is reduced

Voltage (fixed Q) drops to V'.

Dielectric

reduced E, . and V.

_Q
Co
VOLTS

+ +|+ +

vie Q=
KCO Q
VOLTS 2

Q = a constant

OR

With battery attached, insert dielectric.
E,... and V are momentarily reduced
but battery maintains voltage &
Charge flows to the capacitor as
dielectric is inserted until V and E;
are back to original values.

Q=COV

+ +]+ +

Q'=xCyV

+++HH+++

V=—II§.d§=Ed V = a constant

Q>Q



Gauss’ Law with a dielectric

80_[8 Egiei ©dA =0 oe— Upol = Unet
Alternatively:
[ &oF e 2A = Gy = [ £KE 0dA = | DodA

vac

WJ\ "N free charge on plates
field not co

unting polarization = g€,

The “Electric Displacement” D measures field that would be present due to
the “free” charge only, i.e. without polarization field from dielectric

E, .. =KEg, D=¢g(E, . . =¢KE,, =€k,

vac

* K could vary over Gaussian surface S. Usually it is constant and factors
 Flux is still measured using field without dielectric: E, .= KE,= D/e,)

d® =E,,c cdA =KEje| cdA

* Only the free charges ¢y, (excluding polarization) are counted as g, in
the above. Using K on the left compensates for the polarization.

* When applying the above include only Q-
Ignore polarization charges inside the Gaussian surface




Summary: Chapter 25: Capacitance Lecture 6

CHAPTER 24 SUMMARY

Capacitors and capacitance: A capacitor is any pair of C— 2411 Wire | Plate a, area A
conductors separated by an insulating material. When Vi ' [
the capacitor is charged, there are charges of equal mag- [
nitude @ and opposite sign on the two conductors, and ) A —
the potential V; of the positively charged conductor C=T—=¢e~ (24.4) AL
with respect to the negatively charged conductor is pro- Potential Wire
portional to . The capacitance C is defined as the ratio difference = ¥V
of Q to V. The SI unit of capacitance is the farad (F):
IF=1C/V.

A parallel-plate capacitor consists of two parallel
conducting plates, each with area A, separated by a dis-
tance 4. If they are separated by vacuum, the capaci-
tance depends only on A and 4. For other geometries,
the capacitance can be found by using the definition
C = OV, (See Examples 24.1-24.4)

e
capacitances C|, C3, Cs.... are connected in series, the G, C; G G (04 5)

reciprocal of the equivalent capacitance Cj equals the (capacitors in series) W = ¥
sum of the reciprocals of the individual capacitances. L T
When capacitors are connected in parallel, the equiva-

lent capacitance C,y equals the sum of the individual
capacitances. (See Examples 24.5 and 24.6.)

Capacitors in series and parallel: When capacitors with 1 1 1 1
? p p _ . T"f—g—*ltc vT

= + + ... E
Cq = C1 + 2 % G (24.7)
(capacitors in parallel) a
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Energy in a capacitor: The energy U required to charge a t0_+ + £ 4+ 4
cap;?:gmr C mlla potential diﬁe?é:ice Lf’qand a charge éﬂ is U= ’ZQ_C’ = %CV? = %QV (24.9) T EL

equal to the energy stored in the capacitor. This energy v ]

can be thought of as residing in the electric field _ LEDEE 24.11] \|,

between the conductors; the energy density u (energy - —oT="= =
per unit volume) is proportional to the square of the

electric-field magnitude. (See Examples 24.7-24.9.)

Dielectrics: When the space between the conductors is C=KCo=K Eui _ Ei D e
filled with a dielectric material, the capacitance d d T — —C
increases by a factor K, called the dielectric constant (parallel-plate capacitor : —

of the material. The quantity e = Kep is called the per-  filled with dielectric) (24.19) NI i
mittivity of the dielectric. For a fixed amount of charge H— -

on the capacitor plates, induced charges on the surface 1 212 ; =

of the dielectric decrease the electric field and potential u =3KepE” = 7€eE (24.20) 97 e
difference between the plates by the same factor K. The :__ } L
surface charge results from polarization, a microscopic f‘ KE-dA = Qencl-free (24,93 AL

rearrangement of charge in the dielectric. (See Example
24.10.)

Under sufficiently strong fields, dielectrics become
conductors, a situation called dielectric breakdown. The
maximum field that a material can withstand without
breakdown is called its dielectric strength.

In a dielectric, the expression for the energy density
is the same as in vacuum but with &y replaced by
€ = Ke. (See Example 24.11.)

Gauss's law in a dielectric has almost the same form
as in vacuum, with two key differences: Eis replaced

by KE and O .o is replaced by Q.1 fiee- Which includes

only the free charge (not bound charge) enclosed by the
Gaussian surface. (See Example 24.12.)

1]
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