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Physics 121 - Electricity and Magnetism

Lecture 08 - Multi-Loop and RC Circuits
Y&F Chapter 26 Sect. 2 - 5

• Kirchhoff’s Rules

• Multi-Loop Circuit Examples

• RC Circuits

– Charging a Capacitor 

– Discharging a Capacitor

• Discharging Solution of the RC Circuit 

Differential Equation

• The Time Constant 

• Examples

• Charging Solution of the RC Circuit 
Differential Equation

• Features of the Solution

• Examples

• Summary
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Kirchhoff’s 
Rules:
• Branch/Junction Rule (charge conservation):

The current through all series elements in a 
branch is the same.  At any junction: 

• Loop Rule (energy conservation):
The net change in potential difference is
zero for any closed path around a circuit:

 = outin i      i

      V 0=

Generating Circuit Equations with the Kirchoff Loop Rule

• The algebraic sum of voltage changes = zero around all complete 

loops through a circuit (including multi-loop).

• OK to assume either current direction.  

Expect minus signs when choice is wrong. 

• OK to traverse circuit with or against assumed current direction 

• Across resistances, voltage drop DV = - iR if following assumed 

current direction.    Otherwise, set V = +iR.

• When crossing EMFs from – to +,   DV = +E.  Otherwise DV= -E
• Dot product i.E determines whether power is actually 

supplied or dissipated in EMFs 

i
i1

i2



Copyright R. Janow  Fall 2013

The equivalent circuit replaces the series resistors with a 

single equivalent resistance:

Loop Rule: The sum of the potential differences around a 

closed loop equals zero:

Equivalent resistance for resistors in series

Junction Rule:  The current through all of the resistances in 

series (a single branch) is identical:

  iiii  321 ===

0321 =−−− iRiRiR

eqR
i


= iR eq 0=−

321 RRR
i

++


=

321 RRRReq ++=   RR  
n

i
ieq 

=

=
1

The equivalent resistance for a series combination is the sum

of the individual resistances and is always greater than any 

one of them.

inverse of series capacitance rule

same E,  same i as above
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Equivalent resistance for resistors in parallel
Loop Rule:  The potential differences across each of the 

parallel branches are the same. 

3
3

2
2

1
1

R
i    ,

R
i    ,

R
i

EEE
===











++=++=

321
321

111

RRR
       i  i  i  i E

321

1111

RRRReq

++=   
RR

  
n

i ieq

=

=
1

11

011 =− RiE 022 =− RiE 033 =− RiE

Junction Rule:  The sum of the currents flowing in equals the 

sum of the currents flowing out.  Combine equations for all the 

junctions at “a” & “b”.  

eqR
i


= iR eq 0=−

same E,  same i as above

The equivalent circuit replaces the series resistors with a 

single equivalent resistance:

The reciprocal of the equivalent resistance for a parallel combination 

is the sum of the individual reciprocal resistances and is always 

smaller than any one of them.

inverse of parallel capacitance rule

i not in 
equations

 
RR

RR
R  eq

21

21

+
=
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+

-

+

-

R1= 10 W

R2= 15 W

E1 = 8 V E2  = 3 V

i

i

EXAMPLE: MULTIPLE BATTERIES
SINGLE LOOP

A battery (EMF) absorbs power (charges up) when I is opposite to E

 i     i      Pemf





 E E ==



Copyright R. Janow  Fall 2013

Example: Multi-loop circuit with 2 EMFs

R1

E1

i1

+ - +-E2

R3 R2i3 i2

A

BC

D E

F

Given all resistances and EMFs in circuit:
• Find currents (i1, i2, i3), then potential 
drops and power dissipated by resistors

• 3 unknowns (currents) 
imply 3 independent equations needed

Apply Procedure:
• Identify branches & junctions. Name all currents (3) and other variables.  

• Same current flows through all elements in any series branch.  

• Assume arbitrary current directions; negative result means opposite direction. 

• Find junctions, write Junction Rule equations for all.

 = outin i      i

(1)
312
    i  ii +=

• Same equation at junctions A and B (not independent).
• Junction Rule yields only 1 of 3 equations needed
• Are points C, D, E, F junctions? (No)
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Procedure, continued:
• Apply Loop Rule as often as needed to find 

equations that include all the unknowns (3).  

• Traversal direction is arbitrary.

• IR’s are voltage drops when following the assumed

current direction: use - iR

• IR’s are steps up when going against assumed current

• EMF’s are positive when traversed from  – to + side

• EMF’s are negative when traversed from + to - sides 

Solution:  (after a lot of algebra)

  313221 RRRRRR ++=

 
32321

1

RRR
i

EE −+
= 1E

 
123231

2

RRR
i

EEE −−
=

 
2112

3

RR
i

EE −−
=

Define:

R1

E1

i1

+ - +-

E2

R3 R2i3 i2

A

BC

D E

F

      V 0=

ADCBA - CCW 033111 =+− RiRiE

ADCBFEA - CCW 0222111 =−−− ERiRiE

022233 =−−− ERiRiABFEA - CCW

• Only 2 of these 
three are independent
• Now have 3 equations 
in 3 unknowns

Loop equations for the example circuit:
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Example: find currents, voltages, power
6 BRANCHES  → 6 CURRENTS.  

•JUNCTION RULE:
Branches C,E,G are the 
same point, as are D, F, 
H.  4 currents left.
Remaining 2 junction 
equations are dependent
1 junction equation

321 iiii ++=

ABCDA - CW .A ./Ri Ri       Ri 1 043120 11111 =====− E/ EE

CEFDC - CW .A ./xRRii      RiRi 2 518340 2111122 ====+− /

EGHFE - CW .A ./x.RRii      RiRi 3 0268510 3222233 ====+− /

LOOP RULE:

POWER:   .0Ri P WattsR1 481
2
1 ==

  .0Ri P WattsR2 182
2
2 ==

  .0Ri P WattsR3 243
2
3 ==

R3R2R1

Watts

P  P  P       
  .i P 

++=
== 090


EE

.A ..  .  .i iii 57025104321 =++=++=CHECK:

  12.0 .x.Ri   V    VoltsR1should ==== 030411E

W=  .Req 61
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Multiple EMF Example: find currents, voltages, power

MULTIPLE 
EMF

CIRCUIT

USE THE 
SAME RULES

R1 = 2 W R2 = 4 W

E2 = 6 VE1 = 3 V

JUNCTION RULE at A & B: 213 iii +=

LOOP ACDBA:

0221111 =++−−− Ri  Ri   Ri 21 EE 3/4 ii −= 12

LOOP BFEAB:

0221313 =−−−+−   RiRi   Ri 22 EE 23 i i −=

USE JUNCTION EQUATION:

2123 i  i   i   i +=−= 21 i 2 i −=

EVALUATE 
NUMERICALLY:

1/4 i    1/4,-  i   1/2,  i +=== 321

For power use:

iiiii RiP    Ri V 2==



Copyright R. Janow  Fall 2013

27.8  
RC Circuits: Time dependance

• Given Capacitance + Resistance + EMF

• Loop Rule + Junction Rule

• Find Q, i, V, U for capacitor 

as functions of time

First charge C (switch to “a”) then discharge (switch to “b”)

+

-

E

i

i

C

R

+

-

a

b Vc

Charging: Switch to “a”.
Loop equation:

• Assume current i through R is clockwise

• Expect largest current at t = 0, 

• Expect zero current as t → infinity

• Vcap→ E = Vinf as t → infinity

• Energy stored in C, plus some dissipated in R
0    V    iR    c =−−E

Discharging: Switch to “b”.
no EMF,  Loop equation:

0    V    iR  c =−−

• Energy stored in C now dissipated in R

• Arbitrarily assume current is still CW

• Vcap= E at t =0, but it must die away

• Q0= full charge = CVinf= CE
• Result: i through R is actually CCW

Can constant current flow through
a capacitor indefinitely?
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RC Circuit: solution for discharging

0    V    iR c =+Loop Equation is :

C

)t(Q
)t(     V

dt

dQ
   )t(i c ==Substitute : RC

)t(Q
     

dt

dQ
−=

Circuit Equation:

First order differential equation,  form is Q’ = -kQ  → Exponential solution

Charge decays 
exponentially:

• t/RC is 
dimensionless

RC/teQ)t(Q −= 0

RC = t = the TIME CONSTANT
Q falls to 1/e of original value

RC/t
c e )t(V −= E

RC/t
0ei 

dt

dQ
)t(i −=

 (t)CV   )t(Q  
CQ  

c

0
=

= E
Voltage across C 
also decays 
exponentially:

Current also 
decays 
exponentially: RC

Q
  

R
i 0
0 =

E

t 2t 3t

Q0

Q

t

370
1 .e =−
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Solving for discharging phase by direct integration

exponentiate both sides of above right

  
RC

dt
     

Q

dQ
  −=   dt'

RC
      

'Q

'dQ
 

t

0

Q

Q0
 −=

1

Initial conditions (“boundary conditions”)

ECQ    where0 t      Q  )t(Q  0at0 ===
  

RC

)t(Q
     

dt

dQ
  −= RC is 

constant

RC

t
      )

Q

Q
( nl 

0

−=

RC

t
  

0

 )
Q

Q
( nl

e  
Q

Q
 e 0

−
==

x   e  (x) nl =

RC/teQ)t(Q −= 0

exponential 
decay

RC = time constant = time for Q to fall to 1/e of its initial value             

After 3-5 time constants the action is over

37.
2.71828

1

e

1
   e  1 ==−

Time       t       2t     3t       4t       5t
Value     e-1       e-2      e-3 e-4        e-5

% left   36.8  13.5   5.0    1.8   0.67

  RC  t
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Units for RC

8-1:  We defined t = RC, which of the choices best conveys the 

physical units for the decay constant t ?

[t] = [RC] =[(V/i)(Q/V)]=[Q/Q/t]=[t]

A. WF      (ohmfarad)

B. C/A      (coulomb per ampere)

C. WC/V   (ohmcoulomb per volt)

D. VF/A    (voltfarad per ampere)

E. s          (second)
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Examples: discharging capacitor C through resistor R   

C

Q
 U 0)U(t 
2

2
0

0 ==
C

Q
)t(U

2

2

=

b) When has the stored energy fallen to half of its original value?

RC/teQ)t(Q −= 0recall: and

at t = 0:RC/te U)t(U 2
0

−=at any time t:

set: t−== /te U
U

)t(U 2
0

0

2

    /t  ) ln( t−= 2
2

1take log: t=t=  0.35     /2 0.69   t     

a) When has the charge fallen to half of it’s initial value Q0?
t−== /teQQ)t(Q 00

2

1
)  on  only  depends   -t   for (solve 

/t  e  t= t−

2

1
set:

take log: ln(b)  -  ln(a)  ln(a/b)        0  ln(1)           /t  ) ln( ==t−=
2

1

0.69  ln(2)           t/-   )ln( =t=− 2   0.69   t     t=

c) How does the power delivered to C vary with time?

t−t−t− −
=

t

−
== /t/t/t e

RC

Q

C

Q
e][U]e[

dt

d
U

dt

dU
P 2002

0
2

0
2

22

E
C

Q
        i

RC

Q 0
0

0

power:

recall:

t−

t−t−



==

/t2

0

/t/t

0

eP     

 V(t)i(t) eeiP E

C supplies rather than absorbs power

Drop minus sign

  V(t)i(t) )t(P =power supplied
by C:
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RC Circuit: solution for charging

0    V  iR- c =−ELoop Equation is :

C

)t(Q
)t(     V

dt

dQ
   )t(i c ==Substitute : RRC

)t(Q
   

dt

dQ E
+−=

Circuit Equation:

• First order differential equation again:  form is Q’ = - kQ  + constant

• Same as discharge equation, but i0 = E / R is on right side

• At t = 0: Q = 0 & i = i0.  Large current flows  (C acts like a wire)

• As t → infinity: Current → 0  (C acts like an open circuit)

Q → Qinf = CE = same as Q0 for discharge                              

Solution: Charge starts from zero, grows as a saturating exponential.

( )RC/t
inf e Q)t(Q −−= 1

• RC = t = TIME CONSTANT
describes time dependance again 

• Q(t) → 0 as t → 0
• Q(t) → Qinf as t → infinity

t 2t 3t

Qinf

Q

t

6301
1 .e =− −
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RC Circuit: solution for charging, continued

ECQ   and   VCQ    infc ==

Voltage across C also starts from zero and saturates exponentially

)e-(1 )t(V RC/t
c

−= E

Voltage across C while charging:

Voltage drop VR across the resistor:

RC/t
0R Rei R)t(i)t(V −==

Voltage across R decays exponentially, reaches 0 as t→ infinity

RC/t
R e  )t(V −= E

6t5t4t3t2ttTime

.998.993.982.95.865.63Factor

Form factor:  1 – exp( - t / t )

After 3-5 time 
constants the 
action is over

Current decays exponentially just as in discharging case
Growing potential Vc on C blocks current completely at t = infinity

Current in the charging circuit:

( )
RC/t

inf

RC/t
inf

e
RC

Q                   

e
dt

d
Q

dt

)t(dQ
)t(i 

−

−

=

−=

1

1

RC/t
0ei )t(i −=

RC

Q
  

R
i inf
0 =

E

At t=0 C acts like a wire.  At t=infinity C acts like a broken wire
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8-2:  Consider the circuit shown,  The battery has no internal resistance.  

The capacitor has zero charge.  

Just after the switch is closed, what is the current through the battery?

A. 0.

B. /2R.

C. 2/R.

D. /R.

E. impossible to determine

RC circuit – multiple resistors

 R R

C
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8-3:  Consider the circuit shown.  The battery has no internal resistance. 

After the switch has been closed for a very long time, what is the current 

through the battery?

A. 0.

B. /2R.

C. 2/R.

D. /R.

E. impossible to determine

RC circuit – multiple resistors

 R R

C
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Discharging Example: A 2 mF capacitor is charged and 
then connected in series with a resistance R.  The 
original potential across it drops to ¼ of it’s starting 
value in 2 seconds. What is the value of the 
resistance?

Define:  1 MW = 106 W

RC
    ]eln[    )ln()ln( RC/ 2

41
2 −

==− −

Take natural log of both sides:

x]eln[     0ln(1)      1.39 )ln( x ===4

6
102

1
2391

−
==

x1.39

2
  R               RC  .

 M  0.72  R    W=

RC/t
c e V)t(V −= 0

RC/tc e
4

1
 

V

)t(V −==
0

Set:Use:
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Example: Discharging

E

R = 10 KW V0 = E = 12 VC = 500 mF

Capacitor C is charged for a 
long time, then discharged.

a) Find current at t = 0

RC/t
0ei 

dt

dQ
)t(i −=

RC

Q
  

R
i 0
0 =

E
mA .      e

R
  )t(i 21

10

12
0

4

0 ====
E

b) When does VCap (voltage on C) reach 1 Volt?
RC/t

cap e )t(V −= E

5

0 12

1 /tcap
e

V

V
−==

Volts0            secx
2

x  x          V  10  5RC 1251010
64 ==== − E

512 /t)ln( −=−   sec 12.4   )ln( t  == 125

c) Find the current in the resistor at that time

5412
412

/.
 xmA sec e 1.2 ).t(i −==RC/t

0ei 
dt

dQ
)t(i −=

mA   .1 ).t(i sec 0412 ==
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Charging Example: How many time constants does it take 
for an initially uncharged capacitor in an RC circuit to 
become 99% charged?

Did not need specific values of RC

( )t−
 −= /te Q)t(Q 1

Require:
t−



−== /te   0.99 
Q

)t(Q
1 t−= /te   0.01 

Use:

Take natural log of both sides:

t== t/-    4.61-   (0.01) ln 

constant time  CR     =t

constants time of #    .    t/   ==t 614
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Example: Charging a 100 mF 
capacitor in series with a 10,000 W

resistor, using EMF E = 5 V.

E

R

C

)e-(1 )t(V RC/t
c

−= E

a) How long after voltage is applied does Vcap(t) reach 4 volts?

sec
-6

xx
4  1.0 10  100  10 RC ==

RC/tc e-1    0.8        
 

)t(V −===
5

4

E
0.2    e   RC/t = −

Take natural log of both sides:

t    
RC

t
    ][e ln    1.61  ) 0.2 n(l t/RC- −=

−
==−=  sec  1.61    t =

b)  What’s the current through R at t = 2 sec?

RC/t
0ei )t(i −=   

R
i 0

E


5-
x

./../.
0 10  6.77 ).(e

R
ei )t(i ===== −− 2

4

01020102
370

10

5
2

E

 A.  6.8  )t(i  m== 2
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Example: Multiple loops and EMFs

What is the CHANGE in charge on C?

First: E2 charges C to have:

• Switch S is initially open for a long

time.  

• Capacitor C charges to potential of battery 2

• S is then closed for a long time

0i  V 1current     withvolts 3c === 2E
  

-5
phasefirst    for  charge  final0 10 x 3.0  C   Q === 2E

 C 30   Q  phase  second  for  charge  inital 0 m==

Second:  Close switch for a long time

At equilibrium, current i3 though capacitor → zero

Find outer loop current i = i1 = 12 using loop rule

0120403
01122

=−+−
=−−−

)..(i    
iRiR EE  A.3.33  2.0/0.6 i ==

Now find  Voltage  across C, same as voltage across right hand branch

Vx2ab  1.67 0.43.33 - 3  iR  VV ==−=− 2E

671. 1010 )VV( C  Q x
-6

xabfinal =−=

Final charge on C:

C 13.3-   QQ final m=− 0
  C 16.7  Q final m=
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Lecture 8A Chapter   27 - Circuits, Part 1                                                            
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Summary: Lecture 8B Chapter   27 – RC Circuits, Part 2                                             
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