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Kirchhoff’s

Rules: }

* Branch/Junction Rule (charge conservation): i

The current through all series elements in a
branch is the same. At any junction: Diin = Dliout

* Loop Rule (energy conservation):

The net change in potential difference is Z AV = 0
zero for any closed path around a circuit:

Generating Circuit Equations with the Kirchoff Loop Rule

* The algebraic sum of voltage changes = zero around all complete

loops through a circuit (including multi-loop).

OK to assume either current direction.

Expect minus signs when choice is wrong.

OK to traverse circuit with or against assumed current direction
Across resistances, voltage drop DV =- iR if following assumed
current direction. Otherwise, set AV = +iR.

When crossing EMFs from —to +, DV = +&. Otherwise DV= -&€
Dot product i.£€ determines whether power is actually

supplied or dissipated in EMFs Copyright R. Janow Fall 2013



Equivalent resistance for resistors in series

Junction Rule: The current through all of the resistances in
series (a single branch) is identical:

i —_— il —_— i2 —_— i3
Loop Rule: The sum of the potential differences around a
closed loop equals zero:

8—|R1—|R2—|R3=0 ‘ | &

"R, +R,+R;

The equivalent circuit replaces the series resistors with a
single equivalent resistance:

same & samei as above

- -

The equivalent resistance for a series combination is the sum

of the individual resistances and is always greater than any
one of them.

g—iRgq=0

Req=R1+R2+R3

n
Req =ZRi
i=1

inverse of series capacitance rule
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Equivalent resistance for resistors in paraliel

Loop Rule: The potential differences across each of the
parallel branches are the same.

£—i1R1=O £—|2R2=O

£—i3R3 =O

=
: : & : &
=0 i i

1

- - i hot in at
R,’ 3 R equations %ij
Junction Rule: The sum of the currents flowing in equals the

sum of the currents flowing out. Combine equations for all the
junctions at “a” & “b”.

. : : 1 1 1
|=|1+|2+|3= 8 R +R +R
1 2 3

The equivalent circuit replaces the series resistors with a
single equivalent resistance:

same & samei as above

s
: . & %i—'

WN.

23
Reg b

The reciprocal of the equivalent resistance for a parallel combination i b
Is the sum of the individual reciprocal resistances and is always (b)
smaller than any one of them.

1 1 1 1 n _ R4Ry

R R R | o 2a Rea=a v rs

Req Rl R2 R3 Req = R| 1 2

inverse of parallel capacitance rule
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EXAMPLE: MULTIPLE BATTERIES

SINGLE LOOP Foel o QJ&,W% 8,
—/\ NN/ LooP Rures !
LW e e
c%=8_\/“ _“(gzsv -5, = ¢CRMR,)
| R,= 150 o< &t = £-3 . o F-R

A battery (EMF) absorbs power (charges up) when I is opposite to E

E"?-E]T_ !‘“ Pemf=i£|= Eol

E‘,: 5’5 :cPFHTl):LJW ?@wa@ T CARcwI T

= . — . = ""-ud m .
Pﬂz, .--f‘i.-&- ﬁi & N gorbacld _/_ gwd#r..



Example: Multi-loop circuit with 2 EMFs

Given all resistances and EMFs in circuit: 4 +]

S-. |+ ®

- Find currents (i, i,, i3), then potential

* 3 unknowns (currents)
imply 3 independent equations needed

!

@ =_ @ I
| |
drops and power dissipated by resistors j - | j .
I 1 I3 3
©

Apply Procedure:

* [dentify branches & junctions. Name all currents (3) and other variables.

« Same current flows through all elements in any series branch.

« Assume arbitrary current directions; negative result means opposite direction.
 Find junctions, write Junction Rule equations for all.

Ziin = ziout

- Same equation at junctions A and B (not independent).
 Junction Rule yields only 1 of 3 equations needed
- Are points C, D, E, F junctions? (No)

l+i3 (1)

I2=I
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Procedure, continued:

* Apply Loop Rule as often as needed to find

©
equations that include all the unknowns (3). %

a+| -
I 1
* IR’s are voltage drops when following the assumed R, i?’l R, iZI R,
current direction: use - iR
* IR’s are steps up when going against assumed current
 EMF’s are positive when traversed from —to + side :
« EMF’s are negative when traversed from + to - sides © ®

DAV = 0

Loop equations for the example circuit:

ADCBA - CCW & —i{R{ +i5R5 =0 * Only 2 of these
: : three are independent
ADCBFEA - ccw & —11 Ry —15R—& =0 - Now have 3 equations

ABFEA - ccw  —13R3—-1bR,=& =0 in 3 unknowns
Solution: (after a lot of algebra) . _ 4R+ §R3 - ER;

|
Define: 1 []
[ |=RiR; +RR3 +RR3 ‘ = t‘iRs—r%[R]s—t‘éRl

_—GR1-4Ry

I3 = [] | 2013

» Traversal direction is arbitrary. 1

Iy




Example: find currents, voltages, power
6 BRANCHES > 6 CURRENTS.

Branches C,E,G are the I

same point, as are D, F, q. } “ls Q, =3n

H. 4 currents left. =

Remaining 2 junction /)\  F @ ?/3 ﬂ?« S

equations are dependent 1 0, J« ( LL L éﬂr 1’23':6’ J2
®

1 junction equation

=1y 41y +I3 = D Hn 4
LOOP RULE: =

ABCDA - W €-11R;1 =0 = &=11R;=>11=E/R;=12/3=4.0A.
CEFDC - (W —i,R, +i{R; =0 = i, =i;R;/R, =4x3/8=15A.
EGHFE - cW —I13R3+1,R, =0 = I3=1,R,/R3=1.5x8/6=2.0 A.
CHECK: i=i;+i,+ig=4.0+15+2.0=75A. Req=1.6Q
€ should = Vi1 =11R{ =4.0x3.0=12.0 volts
POWER: Pgq =iR; = 48.0 watts

e j P€=goi_=90.0WattS
Pr, =i5R, = 18.0 watts =Pr1+ Pro+ Prs

PR3 — |%R3 = 24.0 Watts Copyright R. Janow Fall 2013



Multiple EMF Example: find currents, voltages, power

R 7 o =2W R,=4w

%,j:%‘ Q% %WNl'T{z, £=3V =6V
LM/EZLL J%R’

LOOP ACDBA:

CLR, =& —ijR, + & +i,R, =0 ‘ =i, —3/4

MULTIPLE
EMF
CIRCUIT

USE THE
SAME RULE

LOOP BFEAB:

CigR, + & —igR; —i,R, — & =0 3= —i,

USE JUNCTION EQUATION: , | S
5= = ht b ‘ =2 V=iR; P =ifR

EVALUATE

1, =1/2, 1,=-1/4, i,=+1/4
NUMERICALLY 1 2 3 Copyright R. Janow Fall 2013



RC Circuits: Time dependance

i a . Can constant current flow through

+
% a capacitor indefinitely?

¢ b E— v * Given Capacitance + Resistance + EMF
) T T - i * Loop Rule + Junction Rule

""" * Find Q, I, V, U for capacitor
as functions of time

—

First charge C (switch to "a”) then discharge (switch to "b")

Chargmg Switch to “a". « Assume current i through R_’ls clockwise
« Expect largest current at t = 0,
Loop equation: « Expect zero current as t = infinity
E — IR — VC =0 *Veap? € = Vie @s t > infinity

* Energy stored in C, plus some dissipated in R

Discharging: Switch to "b". - Energy stored in C now dissipated in R

no &N Loop equaﬂon: * Arbitrarily assume current is still CW
_ ’ * Vop= € at t =0, but it must die away
- 1IR -V, =0 - Q,= full charge = CV, .= C&

* Result: i through Ris actuallx
Copyright Janow Fall 2013



RC Circuit: solution for discharging

Loop Equation is :

Substitute :

i(t)=

IR + Ve =0 Circuit Equation:
aQ __ QM
cjj—? Vc(t)=% - dt  RC

First order differential equation, form is Q’

Charge decays
exponentially:

- +/RC is

dimensionless

Q(t) = Qpet/RC

RC =1 =the TIME CONSTANT

Q falls to 1/e of original value

Voltage across C
also decays
exponentially:

Qo =C¢&
Q(t) =CV (1)

=)

Current also
decays
exponentially:

Q

d _t/RC
dt

1(t) =

=|Oe

kQ -> Exponential solution

T 2T 3T

VC(t)=é'e—t/RC
‘ ¢ _Qo
0= =

R RC
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Solving for discharging phase by direct integration

dQ _ Q) Rrcis Initial conditions ("boundary conditions™)
dt RC constant Qt)=Qg at t=0 WhereQQ=C8

daQ _ _dt Q dQ’ 1 ¢t | Q, __t
0 RC ‘ I? =~ 2chdt ‘ n(Qo) RC

exponentiate both sides of above right €"* =x

Q t
I o - A~ °
. n (Qo) — g —e RC ‘ Q(t) _ Qoe_t/RC exponenhal

Q, decay
RC = time constant = time for Q to fall to 1/e of its initial value
| RC=1 |
Time t 2t 3t 4t 5t
41 1

Value el e2 g3 g4 g
% left 36.8 13.5 5.0 1.8 0.67

After 3-5 time constants the action is over

e =—= ~ .37
e 2.71828




Units for RC

8-1: We defined T = RC, which of the choices best conveys the
physical units for the decay constant T ?

[] = [RC] =[(V/D(Q/V)]=[Q/Q/t]=[t]

Q-F (ohm-farad)

C/A  (coulomb per ampere)
Q-C/V (ohm-coulomb per volt)
V-F/A (volt-farad per ampere)

s
&
I~
o
S (second)

moow»
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Examples: discharging capacitor C through resistor R

a) When has the charge fallen to half of it’s initial value Q,?

1 _ 1 _
set: Q(t)=§Q0=Qoe ti ‘ §=e t/v (solvefort - dependsonly on T)

take log: In(5)= -t/x In(1)=0  In(@b)=In(@) - In(b)
—In2) = -t/ In(2) = 0.69 q -~ t= 06971

b) When has the stored energy fallen to half of its original value?

2
recall: U(t)=g—C and  Q(t)= Qe t/RC

2
at any time t: U{t)=U,e?/R¢ at t = O: U(t=0)EUo=§—C0
set: U(t)=ﬂ=uo e 2t/"
2
. 1 . — —_
take log: In(})=-2t/1 q s t= 0691/2 = 0357
c) How does the power delivered to C vary with time?
poweri: P= d_U — Uoi[e—zt/‘t] — UO[__Z]e—Zt/‘I: — -2 QO QO e—2t/1:
dt dt T 2 C RC
recall: & =i & =& C supplies rather than absorbs power
RC 0 C Drop minus sign

power supplied P =i x €™ =i(t)x V() qj P(t) =i(t) V(t)
Copyright R
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RC Circuit: solution for charging

Loop Equationis: £-iR=V. = 0 Circuit Equation:
| 0 . o | M| dQ_ Qv ¢
Substitute :  j(t) = o V(1) = = dt RC R

* First order differential equation again: formis Q’=-kQ + constant
« Same as discharge equation, butiy= &/ Ris on right side
*Att=0:Q=0&i=1I, Large currentflows (C acts like a wire)
« As t = infinity: Current > 0 (C acts like an open circuit)

Q2> Q= C¢& =same as Q, for discharge

Solution: Charge starts from zero, grows as a saturating exponential.

Q(t) = Qin( 1-e1/RC) T

*RC =1 = TIME CONSTANT 1_e—1 — O 63
describes time dependance again 5 5 -
Q) >0ast~>0 R i o

- Q) 2> Q¢ as T > infinity t

Copyright . Janow Fall 2013




RC Circuit: solution for charging, continued

Voltage across C while charging:

Q=CV., and Q,;=C¢& ‘

Voltage across C also starts from zero and saturates exponentially

Current in the charging circuit:

dQ(t) d

(t) ==~ = Qinf E(l— e‘”RC) ‘

1 _t/rc
me RC

Ve(t) = &€ (1-e7RC)

i(t) =ige™t/RC
_¢ _Qint
°"R " RC

Current decays exponentially just as in discharging case
Growing potential V_ on C blocks current completely at t = infinity
At t=0 C acts like a wire. At t=infinity C acts like a broken wire

Voltage drop Vg across the resistor:

Vi (t) =i(t)R =igRe™t/RC

=)

VR (t) S e—t/RC

Voltage across R decays exponentially, reaches O as t-> infinity

Form factor: 1—exp(-t/1)

»

Factor .63 .865

95

.982

093 998 After 3-5 time
constants the

Time T 21

Ri

47

3T 6t [} action is over




RC circuit — multiple resistors

8-2: Consider the circuit shown, The battery has no internal resistance.
The capacitor has zero charge.

Just after the switch is closed, what is the current through the battery?

A. 0.
TS

B. €/2R. 1

C. 28R

D. €/R. ET—_— R R

E. impossible to determine

~~~~~~~

Copyright R. Janow Fall 2013



RC circuit — multiple resistors

8-3: Consider the circuit shown. The battery has no internal resistance.
After the switch has been closed for a very long time, what is the current
through the battery?

A. 0.

B. €/2R. l l c

C. 2€/R.

D. €/R. El—= R R

E. impossible to determine

~~~~~~~

Copyright R. Janow Fall 2013



Discharging Example: A 2 mF capacitor is charged and
then connected in series with a resistance R. The
original potential across it drops to % of it's starting
value in 2 seconds. What is the value of the

resistance?

Use: v (1) =V, e /RC set:  Ve() _1_ -tirc
Vo 4
Take natural log of both sides:

-2
In(1)=In(4) = In[e?/R¢1 = —=
(1) -In(4) [ ] v

IN(4)=1.39 In(1)=0 In[e*]=xX

139 RC=2 = R = 2 1

1.39 2x107°

B [R-072MO]

Define: 1 MQ =10°Q

Copyright R. Janow Fall 2013




Example: Discharging

&—5\’7-\}& C=500mF R=10KW V,=¢&=12V
8—-_[-‘ 1 | e Capacitor C is charged for a
Li i long time, then discharged.
a) Find current at + = O

. dQ . _i/rc . < Qp ‘ . € | 12
I(t) = — =1, n=— =—> (t=0)= —e" = — = 1.2mA
(t)="_==io 0 (t=0=ze’= 5

b) When does V., (voltage on C) reach 1 Volt?
~t/RC
Veagp(t)=£€ RC=10° 5x10%x10 % =5sec ~ Vy= & = 12 volts

\% 1
\C/E;Io = 12 =e'/® —In(12) =-t/5 ‘ t=5In(12) =12.4 sec

c) Find the current in the resistor at that time

i(t=12.4sec)=0.1 mA

Copyright R. Janow Fall 2013




Charging Example: How many time constants does it take
for an initially uncharged capacitor in an RC circuit to
become 99% charged?

Use: Q(t) = Qw(l_e‘tlt) T = RC =timeconstant

Require: Q(t)

W _go9-1-c  mlh  001= e’

Take natural log of both sides:

In (O_O]_): -461 = -t/t s t/lt = 4.61= #oftimeconstants

Did not need specific values of RC

Copyright R. Janow Fall 2013



Example: Charging a 100 pF , R =
.p o o o 6’_’,! \_\/V\P :

capacitor in series with a 10,000 Q [“
V.

resistor, using EMF £=5 V. —
? | C] . -

a) How long after voltage is applied does V,,(t) reach 4 volts?

V.()=& (1-e7VRC)  RC=10%x100x10° =1.0 sec

Ve() _ 4 0.8 = 1-e~t/RC - e /RC - g2
E
Take natural log of both sides:
In(0.2)=-1.61 = In[eVRC] = '_t - ‘ [t = 1.61 sec |

b) What’s the current through Ratt =2 sec?

: . : &
R
E
i(t=2)=i e—2.0/1.0=_e—2.0/1.0 0.37)2 =6.77 105
(t=2)=ig - — (037 =6.77x

‘| i(t=2)= 6.8 pA. |
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Example: Multiple loops and EMFs

« Switch Sis initially open for a long

time.
» Capacitor C charges to potential of battery 2
« Sis then closed for along time

What is the CHANGE in charge on C~

First: & charges C to have:

V. =& =3volts withcurrentiy =0
QO = final charge for first phase= C€2 = 30 X 10_5

QO =inital charge for secondphase = 30 ],lC

Second: Close switch for a long time

At equilibrium, current i; though capacitor = zero
Find outer loop currenti =i, =1, using loop rule

&—-1R; -IR; =& =0 i =2.0/0.6 =3.33 A,
3 - i(0.4+0.2)—=1=0 '

Now find Voltage across C, same as voltage across right hand branch
V, -V, =& —iR,=3-3.33x0.4=1.67v
Final charge on C:

Qfinar= C(Vp — V,) =10x10°x 1.67
innal = 16.7 HC ‘ inna| _QO= -13.3 l,lC ht R. Janow Fall 2013




Lecture 8A Chapter 27 - Circuits, Part 1
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Summary: Lecture 8B Chapter

CHAPTER 2 B SUMMARY

27 — RC Circuits, Part 2

Resistors in series and parallel: When several resistors ~ Req = R1 + Ry + Rz + -~ [26.1)  Resistors in series
Ry, Ry, R, ... are connected in series, the equivalent (resistors in series) a B x R 3 R
resistance R_g is the sum of the individual resistances. — —
The same current flows through all the resistors in a 11 1 . 1. (96.9] - %, -
series connection. When several resistors are connected R, R Ry R ' Resistors A
in parallel, the reciprocal of the equivalent resistance (resistors in parallel) " pmlli R, i
R is the sum of the reciprocals of the individual resist- — AV —
ances. All resistors in a parallel connection have the I Ry I
same potential difference between their terminals. (See
Examples 26.1 and 26.2.)
Kirchhoff’s rules: Kirchhoff’s junction rule is based on SI1=0  (junction rule) [2B.5) Junction

i 3 i At any junction:
conservation of charge. It states that the algebraic sum 2 V=0 s (9B B) t any junction

of the currents into any junction must be zero. Kirch-
hoft"s loop rule is based on conservation of energy and
the conservative nature of electrostatic fields. It states
that the algebraic sum of potential differences around
any loop must be zero. Careful use of consistent sign

rules is essential in applying Kirchhoff's rules. (See
Examples 26.3-26.7.)

=0

L— | <1
ln+5
s

Loop |«

o *\—W, + ot

||.mp_'-' |[.:w-r| .'~'| R
R TE S
A

Around any loop: IV =0

i
E

Electrical measuring instruments: In a d’ Arsonval galvanometer, the deflection is proportional to
the current in the coil. For a larger current range, a shunt resistor is added, so some of the current
bypasses the meter coil. Such an instrument is called an ammeter. If the coil and any additional
series resistance included obey Ohm's law, the meter can also be calibrated to read potential differ-
ence or voltage. The instrument is then called a volimeter. A good ammeter has very low resistance;
a good voltmeter has very high resistance. (See Examples 26.8-26.11.)

Ammeter Voltmeter
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A-C circuits: When a capacitor is charged by a battery in
series with a resistor, the current and capacitor charge are
not constant. The charge approaches its final value asymp-
totically and the current approaches zero asymptotically.
The charge and current in the circuit are given by

Egs. (26.12) and (26.13). After a time 7 = RC, the charge
has approached within 1/e of its final value. This time is
called the time constant or relaxation time of the circuit.
‘When the capacitor discharges, the charge and current are
given as functions of time by Egs. (26.16) and (26.17).
The time constant is the same for charging and discharg-
ing. (See Examples 26.12 and 26.13.)

Capacitor charging:

g = C'E(l = f"mc]l

— Qr(] _ E.—!fﬂf'}
49 _ £ _ypc
‘@ RS
— Jpe tRC
Capacitor discharging:
q = Qoe "
_%a_ Qo e
dt RC
— JpetRC

[26.12]

(26.13]

[26.16]

[26.17]

i g
g versus {

I versus f
i

o

Household wiring: In household wiring systems, the various electrical devices are connected in
parallel across the power line, which consists of a pair of conductors, one “hot” and the other
“peutral.” An additional “ground” wire is included for safety. The maximum permissible current
in a circuit is determined by the size of the wires and the maximum temperature they can tolerate.
Protection against excessive current and the resulting fire hazard is provided by fuses or circuit

breakers. (See Example 26.14.)

L s
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